ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul2d GIF version

Theorem lemul2d 9743
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
ltmul1d.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
ltmul1d.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„+)
Assertion
Ref Expression
lemul2d (๐œ‘ โ†’ (๐ด โ‰ค ๐ต โ†” (๐ถ ยท ๐ด) โ‰ค (๐ถ ยท ๐ต)))

Proof of Theorem lemul2d
StepHypRef Expression
1 ltmul1d.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
2 ltmul1d.2 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
3 ltmul1d.3 . . 3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„+)
43rpregt0d 9705 . 2 (๐œ‘ โ†’ (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ))
5 lemul2 8816 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ถ ยท ๐ด) โ‰ค (๐ถ ยท ๐ต)))
61, 2, 4, 5syl3anc 1238 1 (๐œ‘ โ†’ (๐ด โ‰ค ๐ต โ†” (๐ถ ยท ๐ด) โ‰ค (๐ถ ยท ๐ต)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆˆ wcel 2148   class class class wbr 4005  (class class class)co 5877  โ„cr 7812  0cc0 7813   ยท cmul 7818   < clt 7994   โ‰ค cle 7995  โ„+crp 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-rp 9656
This theorem is referenced by:  abstri  11115  dveflem  14226  rpcxple2  14377
  Copyright terms: Public domain W3C validator