ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpap0d GIF version

Theorem rpap0d 9518
Description: A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpap0d (𝜑𝐴 # 0)

Proof of Theorem rpap0d
StepHypRef Expression
1 rpred.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpap0 9486 . 2 (𝐴 ∈ ℝ+𝐴 # 0)
31, 2syl 14 1 (𝜑𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1481   class class class wbr 3936  0cc0 7643   # cap 8366  +crp 9469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-ltxr 7828  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-rp 9470
This theorem is referenced by:  cvg1nlemcxze  10785  resqrexlemover  10813  resqrexlemlo  10816  resqrexlemcalc1  10817  resqrexlemcalc2  10818  resqrexlemcalc3  10819  resqrexlemnm  10821  sqrtdiv  10845  abs00ap  10865  absdivap  10873  expcnvap0  11302  cvgratnnlembern  11323  cvgratz  11332  mertenslemi1  11335  limcimolemlt  12839  reeff1oleme  12899  tanrpcl  12964  logdivlti  13008  rpdivcxp  13038  rpabscxpbnd  13065  logbgcd1irr  13090  cvgcmp2nlemabs  13400  trilpolemisumle  13404  iooref1o  13424
  Copyright terms: Public domain W3C validator