ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpap0d GIF version

Theorem rpap0d 9894
Description: A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpap0d (𝜑𝐴 # 0)

Proof of Theorem rpap0d
StepHypRef Expression
1 rpred.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpap0 9862 . 2 (𝐴 ∈ ℝ+𝐴 # 0)
31, 2syl 14 1 (𝜑𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200   class class class wbr 4082  0cc0 7995   # cap 8724  +crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-rp 9846
This theorem is referenced by:  fldiv4lem1div2uz2  10521  cvg1nlemcxze  11488  resqrexlemover  11516  resqrexlemlo  11519  resqrexlemcalc1  11520  resqrexlemcalc2  11521  resqrexlemcalc3  11522  resqrexlemnm  11524  sqrtdiv  11548  abs00ap  11568  absdivap  11576  expcnvap0  12008  cvgratnnlembern  12029  cvgratz  12038  mertenslemi1  12041  limcimolemlt  15332  reeff1oleme  15440  tanrpcl  15505  logdivlti  15549  rpdivcxp  15579  rpabscxpbnd  15608  logbgcd1irr  15635  2lgslem3b  15767  2lgslem3c  15768  2lgslem3d  15769  cvgcmp2nlemabs  16359  iooref1o  16361  trilpolemisumle  16365
  Copyright terms: Public domain W3C validator