ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpap0d GIF version

Theorem rpap0d 9336
Description: A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpap0d (𝜑𝐴 # 0)

Proof of Theorem rpap0d
StepHypRef Expression
1 rpred.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpap0 9307 . 2 (𝐴 ∈ ℝ+𝐴 # 0)
31, 2syl 14 1 (𝜑𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1448   class class class wbr 3875  0cc0 7500   # cap 8209  +crp 9291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-ltxr 7677  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-rp 9292
This theorem is referenced by:  cvg1nlemcxze  10594  resqrexlemover  10622  resqrexlemlo  10625  resqrexlemcalc1  10626  resqrexlemcalc2  10627  resqrexlemcalc3  10628  resqrexlemnm  10630  sqrtdiv  10654  abs00ap  10674  absdivap  10682  expcnvap0  11110  cvgratnnlembern  11131  cvgratz  11140  mertenslemi1  11143  limcimolemlt  12513  cvgcmp2nlemabs  12811  trilpolemisumle  12815
  Copyright terms: Public domain W3C validator