ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivdivd GIF version

Theorem ledivdivd 9758
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
rpaddcld.1 (𝜑𝐵 ∈ ℝ+)
ltdiv2d.3 (𝜑𝐶 ∈ ℝ+)
ledivdivd.4 (𝜑𝐷 ∈ ℝ+)
ledivdivd.5 (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))
Assertion
Ref Expression
ledivdivd (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))

Proof of Theorem ledivdivd
StepHypRef Expression
1 ledivdivd.5 . 2 (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))
2 rpred.1 . . . 4 (𝜑𝐴 ∈ ℝ+)
32rpregt0d 9739 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4 rpaddcld.1 . . . 4 (𝜑𝐵 ∈ ℝ+)
54rpregt0d 9739 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
6 ltdiv2d.3 . . . 4 (𝜑𝐶 ∈ ℝ+)
76rpregt0d 9739 . . 3 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
8 ledivdivd.4 . . . 4 (𝜑𝐷 ∈ ℝ+)
98rpregt0d 9739 . . 3 (𝜑 → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
10 ledivdiv 8882 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
113, 5, 7, 9, 10syl22anc 1250 . 2 (𝜑 → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
121, 11mpbid 147 1 (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160   class class class wbr 4021  (class class class)co 5900  cr 7845  0cc0 7846   < clt 8027  cle 8028   / cdiv 8664  +crp 9689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-id 4314  df-po 4317  df-iso 4318  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-iota 5199  df-fun 5240  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-rp 9690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator