ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivdivd GIF version

Theorem ledivdivd 9477
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
rpaddcld.1 (𝜑𝐵 ∈ ℝ+)
ltdiv2d.3 (𝜑𝐶 ∈ ℝ+)
ledivdivd.4 (𝜑𝐷 ∈ ℝ+)
ledivdivd.5 (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))
Assertion
Ref Expression
ledivdivd (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))

Proof of Theorem ledivdivd
StepHypRef Expression
1 ledivdivd.5 . 2 (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))
2 rpred.1 . . . 4 (𝜑𝐴 ∈ ℝ+)
32rpregt0d 9458 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4 rpaddcld.1 . . . 4 (𝜑𝐵 ∈ ℝ+)
54rpregt0d 9458 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
6 ltdiv2d.3 . . . 4 (𝜑𝐶 ∈ ℝ+)
76rpregt0d 9458 . . 3 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
8 ledivdivd.4 . . . 4 (𝜑𝐷 ∈ ℝ+)
98rpregt0d 9458 . . 3 (𝜑 → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
10 ledivdiv 8616 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
113, 5, 7, 9, 10syl22anc 1202 . 2 (𝜑 → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
121, 11mpbid 146 1 (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1465   class class class wbr 3899  (class class class)co 5742  cr 7587  0cc0 7588   < clt 7768  cle 7769   / cdiv 8400  +crp 9409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-rp 9410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator