![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltdivmul2d | GIF version |
Description: 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
Ref | Expression |
---|---|
ltdivmul2d | ⊢ (𝜑 → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmul1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmul1d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltmul1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
4 | 3 | rpregt0d 9180 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
5 | ltdivmul2 8339 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 · 𝐶))) | |
6 | 1, 2, 4, 5 | syl3anc 1174 | 1 ⊢ (𝜑 → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1438 class class class wbr 3845 (class class class)co 5652 ℝcr 7349 0cc0 7350 · cmul 7355 < clt 7522 / cdiv 8139 ℝ+crp 9134 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-mulrcl 7444 ax-addcom 7445 ax-mulcom 7446 ax-addass 7447 ax-mulass 7448 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-1rid 7452 ax-0id 7453 ax-rnegex 7454 ax-precex 7455 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-apti 7460 ax-pre-ltadd 7461 ax-pre-mulgt0 7462 ax-pre-mulext 7463 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-po 4123 df-iso 4124 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-iota 4980 df-fun 5017 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-reap 8052 df-ap 8059 df-div 8140 df-rp 9135 |
This theorem is referenced by: qbtwnrelemcalc 9667 cvg1nlemcxze 10415 resqrexlemnm 10451 mertenslemi1 10929 |
Copyright terms: Public domain | W3C validator |