Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lediv23d | GIF version |
Description: Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltdiv23d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltdiv23d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
ltdiv23d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
lediv23d.4 | ⊢ (𝜑 → (𝐴 / 𝐵) ≤ 𝐶) |
Ref | Expression |
---|---|
lediv23d | ⊢ (𝜑 → (𝐴 / 𝐶) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lediv23d.4 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) ≤ 𝐶) | |
2 | ltdiv23d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltdiv23d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
4 | 3 | rpregt0d 9588 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
5 | ltdiv23d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
6 | 5 | rpregt0d 9588 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
7 | lediv23 8743 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1217 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵)) |
9 | 1, 8 | mpbid 146 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2125 class class class wbr 3961 (class class class)co 5814 ℝcr 7710 0cc0 7711 < clt 7891 ≤ cle 7892 / cdiv 8524 ℝ+crp 9538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-po 4251 df-iso 4252 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-rp 9539 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |