| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll2 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1025 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: fidceq 7039 fidifsnen 7040 en2eqpr 7077 iunfidisj 7121 ctssdc 7288 cauappcvgprlemlol 7842 caucvgprlemlol 7865 caucvgprprlemlol 7893 elfzonelfzo 10444 qbtwnre 10484 nn0ltexp2 10939 hashun 11035 swrdclg 11190 xrmaxltsup 11777 subcn2 11830 prodmodclem2 12096 divalglemex 12441 divalglemeuneg 12442 dvdslegcd 12493 lcmledvds 12600 modprmn0modprm0 12787 qexpz 12883 rnglidlmcl 14452 iscnp4 14900 cnrest2 14918 blssps 15109 blss 15110 bdbl 15185 metcnp3 15193 addcncntoplem 15243 cdivcncfap 15286 lgsfcl2 15693 lgsdir 15722 lgsne0 15725 |
| Copyright terms: Public domain | W3C validator |