| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll2 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1006 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: fidceq 6999 fidifsnen 7000 en2eqpr 7037 iunfidisj 7081 ctssdc 7248 cauappcvgprlemlol 7802 caucvgprlemlol 7825 caucvgprprlemlol 7853 elfzonelfzo 10403 qbtwnre 10443 nn0ltexp2 10898 hashun 10994 swrdclg 11148 xrmaxltsup 11735 subcn2 11788 prodmodclem2 12054 divalglemex 12399 divalglemeuneg 12400 dvdslegcd 12451 lcmledvds 12558 modprmn0modprm0 12745 qexpz 12841 rnglidlmcl 14409 iscnp4 14857 cnrest2 14875 blssps 15066 blss 15067 bdbl 15142 metcnp3 15150 addcncntoplem 15200 cdivcncfap 15243 lgsfcl2 15650 lgsdir 15679 lgsne0 15682 |
| Copyright terms: Public domain | W3C validator |