| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll2 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1004 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: fidceq 6973 fidifsnen 6974 en2eqpr 7011 iunfidisj 7055 ctssdc 7222 cauappcvgprlemlol 7767 caucvgprlemlol 7790 caucvgprprlemlol 7818 elfzonelfzo 10366 qbtwnre 10406 nn0ltexp2 10861 hashun 10957 swrdclg 11111 xrmaxltsup 11613 subcn2 11666 prodmodclem2 11932 divalglemex 12277 divalglemeuneg 12278 dvdslegcd 12329 lcmledvds 12436 modprmn0modprm0 12623 qexpz 12719 rnglidlmcl 14286 iscnp4 14734 cnrest2 14752 blssps 14943 blss 14944 bdbl 15019 metcnp3 15027 addcncntoplem 15077 cdivcncfap 15120 lgsfcl2 15527 lgsdir 15556 lgsne0 15559 |
| Copyright terms: Public domain | W3C validator |