| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll2 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1003 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fidceq 6939 fidifsnen 6940 en2eqpr 6977 iunfidisj 7021 ctssdc 7188 cauappcvgprlemlol 7733 caucvgprlemlol 7756 caucvgprprlemlol 7784 elfzonelfzo 10325 qbtwnre 10365 nn0ltexp2 10820 hashun 10916 xrmaxltsup 11442 subcn2 11495 prodmodclem2 11761 divalglemex 12106 divalglemeuneg 12107 dvdslegcd 12158 lcmledvds 12265 modprmn0modprm0 12452 qexpz 12548 rnglidlmcl 14114 iscnp4 14562 cnrest2 14580 blssps 14771 blss 14772 bdbl 14847 metcnp3 14855 addcncntoplem 14905 cdivcncfap 14948 lgsfcl2 15355 lgsdir 15384 lgsne0 15387 |
| Copyright terms: Public domain | W3C validator |