![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpll2 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1003 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: fidceq 6925 fidifsnen 6926 en2eqpr 6963 iunfidisj 7005 ctssdc 7172 cauappcvgprlemlol 7707 caucvgprlemlol 7730 caucvgprprlemlol 7758 elfzonelfzo 10297 qbtwnre 10325 nn0ltexp2 10780 hashun 10876 xrmaxltsup 11401 subcn2 11454 prodmodclem2 11720 divalglemex 12063 divalglemeuneg 12064 dvdslegcd 12101 lcmledvds 12208 modprmn0modprm0 12394 qexpz 12490 rnglidlmcl 13976 iscnp4 14386 cnrest2 14404 blssps 14595 blss 14596 bdbl 14671 metcnp3 14679 addcncntoplem 14719 cdivcncfap 14758 lgsfcl2 15122 lgsdir 15151 lgsne0 15154 |
Copyright terms: Public domain | W3C validator |