ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 GIF version

Theorem simpll2 1037
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 1001 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  fidceq  6871  fidifsnen  6872  en2eqpr  6909  iunfidisj  6947  ctssdc  7114  cauappcvgprlemlol  7648  caucvgprlemlol  7671  caucvgprprlemlol  7699  elfzonelfzo  10232  qbtwnre  10259  nn0ltexp2  10691  hashun  10787  xrmaxltsup  11268  subcn2  11321  prodmodclem2  11587  divalglemex  11929  divalglemeuneg  11930  dvdslegcd  11967  lcmledvds  12072  modprmn0modprm0  12258  qexpz  12352  iscnp4  13803  cnrest2  13821  blssps  14012  blss  14013  bdbl  14088  metcnp3  14096  addcncntoplem  14136  cdivcncfap  14172  lgsfcl2  14492  lgsdir  14521  lgsne0  14524
  Copyright terms: Public domain W3C validator