ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 GIF version

Theorem simpll2 1061
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 1025 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  fidceq  7039  fidifsnen  7040  en2eqpr  7077  iunfidisj  7121  ctssdc  7288  cauappcvgprlemlol  7842  caucvgprlemlol  7865  caucvgprprlemlol  7893  elfzonelfzo  10444  qbtwnre  10484  nn0ltexp2  10939  hashun  11035  swrdclg  11190  xrmaxltsup  11777  subcn2  11830  prodmodclem2  12096  divalglemex  12441  divalglemeuneg  12442  dvdslegcd  12493  lcmledvds  12600  modprmn0modprm0  12787  qexpz  12883  rnglidlmcl  14452  iscnp4  14900  cnrest2  14918  blssps  15109  blss  15110  bdbl  15185  metcnp3  15193  addcncntoplem  15243  cdivcncfap  15286  lgsfcl2  15693  lgsdir  15722  lgsne0  15725
  Copyright terms: Public domain W3C validator