| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simpll2 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| simpll2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl2 1003 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: fidceq 6930 fidifsnen 6931 en2eqpr 6968 iunfidisj 7012 ctssdc 7179 cauappcvgprlemlol 7714 caucvgprlemlol 7737 caucvgprprlemlol 7765 elfzonelfzo 10306 qbtwnre 10346 nn0ltexp2 10801 hashun 10897 xrmaxltsup 11423 subcn2 11476 prodmodclem2 11742 divalglemex 12087 divalglemeuneg 12088 dvdslegcd 12131 lcmledvds 12238 modprmn0modprm0 12425 qexpz 12521 rnglidlmcl 14036 iscnp4 14454 cnrest2 14472 blssps 14663 blss 14664 bdbl 14739 metcnp3 14747 addcncntoplem 14797 cdivcncfap 14840 lgsfcl2 15247 lgsdir 15276 lgsne0 15279 | 
| Copyright terms: Public domain | W3C validator |