ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 GIF version

Theorem simpll2 1040
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 1004 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  fidceq  6973  fidifsnen  6974  en2eqpr  7011  iunfidisj  7055  ctssdc  7222  cauappcvgprlemlol  7767  caucvgprlemlol  7790  caucvgprprlemlol  7818  elfzonelfzo  10366  qbtwnre  10406  nn0ltexp2  10861  hashun  10957  swrdclg  11111  xrmaxltsup  11613  subcn2  11666  prodmodclem2  11932  divalglemex  12277  divalglemeuneg  12278  dvdslegcd  12329  lcmledvds  12436  modprmn0modprm0  12623  qexpz  12719  rnglidlmcl  14286  iscnp4  14734  cnrest2  14752  blssps  14943  blss  14944  bdbl  15019  metcnp3  15027  addcncntoplem  15077  cdivcncfap  15120  lgsfcl2  15527  lgsdir  15556  lgsne0  15559
  Copyright terms: Public domain W3C validator