| Step | Hyp | Ref
 | Expression | 
| 1 |   | fconst6g 5456 | 
. . 3
⊢ (𝐵 ∈ 𝑌 → (𝑋 × {𝐵}):𝑋⟶𝑌) | 
| 2 | 1 | 3ad2ant3 1022 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}):𝑋⟶𝑌) | 
| 3 | 2 | adantr 276 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {𝐵}):𝑋⟶𝑌) | 
| 4 |   | simpll3 1040 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → 𝐵 ∈ 𝑌) | 
| 5 |   | simplr 528 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → 𝑥 ∈ 𝑋) | 
| 6 |   | fvconst2g 5776 | 
. . . . . . . 8
⊢ ((𝐵 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) | 
| 7 | 4, 5, 6 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) | 
| 8 | 7 | eleq1d 2265 | 
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 ↔ 𝐵 ∈ 𝑦)) | 
| 9 |   | simpll1 1038 | 
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 10 |   | toponmax 14261 | 
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 11 | 9, 10 | syl 14 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝑋 ∈ 𝐽) | 
| 12 |   | simplr 528 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝑥 ∈ 𝑋) | 
| 13 |   | df-ima 4676 | 
. . . . . . . . 9
⊢ ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋) | 
| 14 |   | ssid 3203 | 
. . . . . . . . . . . . 13
⊢ 𝑋 ⊆ 𝑋 | 
| 15 |   | xpssres 4981 | 
. . . . . . . . . . . . 13
⊢ (𝑋 ⊆ 𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})) | 
| 16 | 14, 15 | ax-mp 5 | 
. . . . . . . . . . . 12
⊢ ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}) | 
| 17 | 16 | rneqi 4894 | 
. . . . . . . . . . 11
⊢ ran
((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵}) | 
| 18 |   | rnxpss 5101 | 
. . . . . . . . . . 11
⊢ ran
(𝑋 × {𝐵}) ⊆ {𝐵} | 
| 19 | 17, 18 | eqsstri 3215 | 
. . . . . . . . . 10
⊢ ran
((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵} | 
| 20 |   | simprr 531 | 
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝐵 ∈ 𝑦) | 
| 21 | 20 | snssd 3767 | 
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → {𝐵} ⊆ 𝑦) | 
| 22 | 19, 21 | sstrid 3194 | 
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦) | 
| 23 | 13, 22 | eqsstrid 3229 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦) | 
| 24 |   | eleq2 2260 | 
. . . . . . . . . 10
⊢ (𝑢 = 𝑋 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑋)) | 
| 25 |   | imaeq2 5005 | 
. . . . . . . . . . 11
⊢ (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋)) | 
| 26 | 25 | sseq1d 3212 | 
. . . . . . . . . 10
⊢ (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) | 
| 27 | 24, 26 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑢 = 𝑋 → ((𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))) | 
| 28 | 27 | rspcev 2868 | 
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑥 ∈ 𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)) | 
| 29 | 11, 12, 23, 28 | syl12anc 1247 | 
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)) | 
| 30 | 29 | expr 375 | 
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (𝐵 ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) | 
| 31 | 8, 30 | sylbid 150 | 
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) | 
| 32 | 31 | ralrimiva 2570 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) | 
| 33 |   | simpl1 1002 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 34 |   | simpl2 1003 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 35 |   | simpr 110 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | 
| 36 |   | iscnp 14435 | 
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))))) | 
| 37 | 33, 34, 35, 36 | syl3anc 1249 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))))) | 
| 38 | 3, 32, 37 | mpbir2and 946 | 
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 39 | 38 | ralrimiva 2570 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 40 |   | cncnp 14466 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)))) | 
| 41 | 40 | 3adant3 1019 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)))) | 
| 42 | 2, 39, 41 | mpbir2and 946 | 
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) |