ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnconst2 GIF version

Theorem cnconst2 12441
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst2
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 5329 . . 3 (𝐵𝑌 → (𝑋 × {𝐵}):𝑋𝑌)
213ad2ant3 1005 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}):𝑋𝑌)
32adantr 274 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}):𝑋𝑌)
4 simpll3 1023 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝐵𝑌)
5 simplr 520 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝑥𝑋)
6 fvconst2g 5642 . . . . . . . 8 ((𝐵𝑌𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
74, 5, 6syl2anc 409 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
87eleq1d 2209 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦𝐵𝑦))
9 simpll1 1021 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
10 toponmax 12231 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
119, 10syl 14 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑋𝐽)
12 simplr 520 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑥𝑋)
13 df-ima 4560 . . . . . . . . 9 ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋)
14 ssid 3122 . . . . . . . . . . . . 13 𝑋𝑋
15 xpssres 4862 . . . . . . . . . . . . 13 (𝑋𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}))
1614, 15ax-mp 5 . . . . . . . . . . . 12 ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})
1716rneqi 4775 . . . . . . . . . . 11 ran ((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵})
18 rnxpss 4978 . . . . . . . . . . 11 ran (𝑋 × {𝐵}) ⊆ {𝐵}
1917, 18eqsstri 3134 . . . . . . . . . 10 ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵}
20 simprr 522 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐵𝑦)
2120snssd 3673 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → {𝐵} ⊆ 𝑦)
2219, 21sstrid 3113 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦)
2313, 22eqsstrid 3148 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)
24 eleq2 2204 . . . . . . . . . 10 (𝑢 = 𝑋 → (𝑥𝑢𝑥𝑋))
25 imaeq2 4885 . . . . . . . . . . 11 (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋))
2625sseq1d 3131 . . . . . . . . . 10 (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))
2724, 26anbi12d 465 . . . . . . . . 9 (𝑢 = 𝑋 → ((𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)))
2827rspcev 2793 . . . . . . . 8 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
2911, 12, 23, 28syl12anc 1215 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
3029expr 373 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (𝐵𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
318, 30sylbid 149 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
3231ralrimiva 2508 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
33 simpl1 985 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
34 simpl2 986 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
35 simpr 109 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
36 iscnp 12407 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
3733, 34, 35, 36syl3anc 1217 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
383, 32, 37mpbir2and 929 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
3938ralrimiva 2508 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
40 cncnp 12438 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
41403adant3 1002 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
422, 39, 41mpbir2and 929 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  wss 3076  {csn 3532   × cxp 4545  ran crn 4548  cres 4549  cima 4550  wf 5127  cfv 5131  (class class class)co 5782  TopOnctopon 12216   Cn ccn 12393   CnP ccnp 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-topgen 12180  df-top 12204  df-topon 12217  df-cn 12396  df-cnp 12397
This theorem is referenced by:  cnconst  12442  cnmptc  12490
  Copyright terms: Public domain W3C validator