ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashun GIF version

Theorem hashun 10707
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))

Proof of Theorem hashun
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6718 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1007 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6718 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 119 . . . . 5 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
653ad2ant2 1008 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑚 ∈ ω 𝐵𝑚)
76adantr 274 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
8 simplrl 525 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
9 simprl 521 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
10 eqid 2164 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110omgadd 10704 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
128, 9, 11syl2anc 409 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
13 nnacl 6439 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ ω)
148, 9, 13syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ∈ ω)
15 enrefg 6721 . . . . . . 7 ((𝑛 +o 𝑚) ∈ ω → (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚))
1614, 15syl 14 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚))
17 hashennn 10682 . . . . . 6 (((𝑛 +o 𝑚) ∈ ω ∧ (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚)) → (♯‘(𝑛 +o 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)))
1814, 16, 17syl2anc 409 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +o 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)))
19 vex 2724 . . . . . . . 8 𝑛 ∈ V
2019enref 6722 . . . . . . 7 𝑛𝑛
21 hashennn 10682 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑛𝑛) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
228, 20, 21sylancl 410 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
23 vex 2724 . . . . . . . 8 𝑚 ∈ V
2423enref 6722 . . . . . . 7 𝑚𝑚
25 hashennn 10682 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑚𝑚) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
269, 24, 25sylancl 410 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2722, 26oveq12d 5854 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝑛) + (♯‘𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
2812, 18, 273eqtr4d 2207 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +o 𝑚)) = ((♯‘𝑛) + (♯‘𝑚)))
29 simpll1 1025 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴 ∈ Fin)
30 simpll2 1026 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵 ∈ Fin)
31 simpll3 1027 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) = ∅)
32 simplrr 526 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
33 simprr 522 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝑚)
3429, 30, 31, 8, 9, 32, 33hashunlem 10706 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ≈ (𝑛 +o 𝑚))
35 unfidisj 6878 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
3635ad2antrr 480 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ∈ Fin)
37 nnfi 6829 . . . . . . . 8 ((𝑛 +o 𝑚) ∈ ω → (𝑛 +o 𝑚) ∈ Fin)
3813, 37syl 14 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ Fin)
398, 9, 38syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ∈ Fin)
40 hashen 10686 . . . . . 6 (((𝐴𝐵) ∈ Fin ∧ (𝑛 +o 𝑚) ∈ Fin) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +o 𝑚)))
4136, 39, 40syl2anc 409 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +o 𝑚)))
4234, 41mpbird 166 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)))
43 nnfi 6829 . . . . . . . 8 (𝑛 ∈ ω → 𝑛 ∈ Fin)
448, 43syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ Fin)
45 hashen 10686 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑛 ∈ Fin) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4629, 44, 45syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4732, 46mpbird 166 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐴) = (♯‘𝑛))
48 nnfi 6829 . . . . . . . 8 (𝑚 ∈ ω → 𝑚 ∈ Fin)
499, 48syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ Fin)
50 hashen 10686 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑚 ∈ Fin) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5130, 49, 50syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5233, 51mpbird 166 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐵) = (♯‘𝑚))
5347, 52oveq12d 5854 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝑛) + (♯‘𝑚)))
5428, 42, 533eqtr4d 2207 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
557, 54rexlimddv 2586 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
563, 55rexlimddv 2586 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wrex 2443  cun 3109  cin 3110  c0 3404   class class class wbr 3976  cmpt 4037  ωcom 4561  cfv 5182  (class class class)co 5836  freccfrec 6349   +o coa 6372  cen 6695  Fincfn 6697  0cc0 7744  1c1 7745   + caddc 7747  cz 9182  chash 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-oadd 6379  df-er 6492  df-en 6698  df-dom 6699  df-fin 6700  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-ihash 10678
This theorem is referenced by:  hashunsng  10709  fihashssdif  10720  hashxp  10728  fsumconst  11381  phiprmpw  12131
  Copyright terms: Public domain W3C validator