ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashun GIF version

Theorem hashun 10110
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))

Proof of Theorem hashun
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6430 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 118 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 962 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6430 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 118 . . . . 5 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
653ad2ant2 963 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑚 ∈ ω 𝐵𝑚)
76adantr 270 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
8 simplrl 502 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
9 simprl 498 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
10 eqid 2085 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110omgadd 10107 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +𝑜 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
128, 9, 11syl2anc 403 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +𝑜 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
13 nnacl 6195 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +𝑜 𝑚) ∈ ω)
148, 9, 13syl2anc 403 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +𝑜 𝑚) ∈ ω)
15 enrefg 6433 . . . . . . 7 ((𝑛 +𝑜 𝑚) ∈ ω → (𝑛 +𝑜 𝑚) ≈ (𝑛 +𝑜 𝑚))
1614, 15syl 14 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +𝑜 𝑚) ≈ (𝑛 +𝑜 𝑚))
17 hashennn 10085 . . . . . 6 (((𝑛 +𝑜 𝑚) ∈ ω ∧ (𝑛 +𝑜 𝑚) ≈ (𝑛 +𝑜 𝑚)) → (♯‘(𝑛 +𝑜 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +𝑜 𝑚)))
1814, 16, 17syl2anc 403 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +𝑜 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +𝑜 𝑚)))
19 vex 2618 . . . . . . . 8 𝑛 ∈ V
2019enref 6434 . . . . . . 7 𝑛𝑛
21 hashennn 10085 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑛𝑛) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
228, 20, 21sylancl 404 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
23 vex 2618 . . . . . . . 8 𝑚 ∈ V
2423enref 6434 . . . . . . 7 𝑚𝑚
25 hashennn 10085 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑚𝑚) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
269, 24, 25sylancl 404 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2722, 26oveq12d 5631 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝑛) + (♯‘𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
2812, 18, 273eqtr4d 2127 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +𝑜 𝑚)) = ((♯‘𝑛) + (♯‘𝑚)))
29 simpll1 980 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴 ∈ Fin)
30 simpll2 981 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵 ∈ Fin)
31 simpll3 982 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) = ∅)
32 simplrr 503 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
33 simprr 499 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝑚)
3429, 30, 31, 8, 9, 32, 33hashunlem 10109 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ≈ (𝑛 +𝑜 𝑚))
35 unfidisj 6584 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
3635ad2antrr 472 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ∈ Fin)
37 nnfi 6540 . . . . . . . 8 ((𝑛 +𝑜 𝑚) ∈ ω → (𝑛 +𝑜 𝑚) ∈ Fin)
3813, 37syl 14 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +𝑜 𝑚) ∈ Fin)
398, 9, 38syl2anc 403 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +𝑜 𝑚) ∈ Fin)
40 hashen 10089 . . . . . 6 (((𝐴𝐵) ∈ Fin ∧ (𝑛 +𝑜 𝑚) ∈ Fin) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +𝑜 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +𝑜 𝑚)))
4136, 39, 40syl2anc 403 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +𝑜 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +𝑜 𝑚)))
4234, 41mpbird 165 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = (♯‘(𝑛 +𝑜 𝑚)))
43 nnfi 6540 . . . . . . . 8 (𝑛 ∈ ω → 𝑛 ∈ Fin)
448, 43syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ Fin)
45 hashen 10089 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑛 ∈ Fin) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4629, 44, 45syl2anc 403 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4732, 46mpbird 165 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐴) = (♯‘𝑛))
48 nnfi 6540 . . . . . . . 8 (𝑚 ∈ ω → 𝑚 ∈ Fin)
499, 48syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ Fin)
50 hashen 10089 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑚 ∈ Fin) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5130, 49, 50syl2anc 403 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5233, 51mpbird 165 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐵) = (♯‘𝑚))
5347, 52oveq12d 5631 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝑛) + (♯‘𝑚)))
5428, 42, 533eqtr4d 2127 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
557, 54rexlimddv 2489 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
563, 55rexlimddv 2489 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  wrex 2356  cun 2986  cin 2987  c0 3275   class class class wbr 3820  cmpt 3874  ωcom 4378  cfv 4981  (class class class)co 5613  freccfrec 6109   +𝑜 coa 6132  cen 6407  Fincfn 6409  0cc0 7294  1c1 7295   + caddc 7297  cz 8683  chash 10080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-addass 7391  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-irdg 6089  df-frec 6110  df-1o 6135  df-oadd 6139  df-er 6244  df-en 6410  df-dom 6411  df-fin 6412  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-inn 8358  df-n0 8607  df-z 8684  df-uz 8952  df-ihash 10081
This theorem is referenced by:  hashunsng  10112  fihashssdif  10123  hashxp  10131  phiprmpw  11080
  Copyright terms: Public domain W3C validator