ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashun GIF version

Theorem hashun 10994
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))

Proof of Theorem hashun
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6882 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1023 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6882 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 120 . . . . 5 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
653ad2ant2 1024 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑚 ∈ ω 𝐵𝑚)
76adantr 276 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
8 simplrl 535 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
9 simprl 529 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
10 eqid 2209 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110omgadd 10991 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
128, 9, 11syl2anc 411 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
13 nnacl 6596 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ ω)
148, 9, 13syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ∈ ω)
15 enrefg 6885 . . . . . . 7 ((𝑛 +o 𝑚) ∈ ω → (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚))
1614, 15syl 14 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚))
17 hashennn 10969 . . . . . 6 (((𝑛 +o 𝑚) ∈ ω ∧ (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚)) → (♯‘(𝑛 +o 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)))
1814, 16, 17syl2anc 411 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +o 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)))
19 vex 2782 . . . . . . . 8 𝑛 ∈ V
2019enref 6886 . . . . . . 7 𝑛𝑛
21 hashennn 10969 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑛𝑛) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
228, 20, 21sylancl 413 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
23 vex 2782 . . . . . . . 8 𝑚 ∈ V
2423enref 6886 . . . . . . 7 𝑚𝑚
25 hashennn 10969 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑚𝑚) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
269, 24, 25sylancl 413 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2722, 26oveq12d 5992 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝑛) + (♯‘𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
2812, 18, 273eqtr4d 2252 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +o 𝑚)) = ((♯‘𝑛) + (♯‘𝑚)))
29 simpll1 1041 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴 ∈ Fin)
30 simpll2 1042 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵 ∈ Fin)
31 simpll3 1043 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) = ∅)
32 simplrr 536 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
33 simprr 531 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝑚)
3429, 30, 31, 8, 9, 32, 33hashunlem 10993 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ≈ (𝑛 +o 𝑚))
35 unfidisj 7052 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
3635ad2antrr 488 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ∈ Fin)
37 nnfi 7002 . . . . . . . 8 ((𝑛 +o 𝑚) ∈ ω → (𝑛 +o 𝑚) ∈ Fin)
3813, 37syl 14 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ Fin)
398, 9, 38syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ∈ Fin)
40 hashen 10973 . . . . . 6 (((𝐴𝐵) ∈ Fin ∧ (𝑛 +o 𝑚) ∈ Fin) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +o 𝑚)))
4136, 39, 40syl2anc 411 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +o 𝑚)))
4234, 41mpbird 167 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)))
43 nnfi 7002 . . . . . . . 8 (𝑛 ∈ ω → 𝑛 ∈ Fin)
448, 43syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ Fin)
45 hashen 10973 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑛 ∈ Fin) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4629, 44, 45syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4732, 46mpbird 167 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐴) = (♯‘𝑛))
48 nnfi 7002 . . . . . . . 8 (𝑚 ∈ ω → 𝑚 ∈ Fin)
499, 48syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ Fin)
50 hashen 10973 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑚 ∈ Fin) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5130, 49, 50syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5233, 51mpbird 167 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐵) = (♯‘𝑚))
5347, 52oveq12d 5992 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝑛) + (♯‘𝑚)))
5428, 42, 533eqtr4d 2252 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
557, 54rexlimddv 2633 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
563, 55rexlimddv 2633 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wrex 2489  cun 3175  cin 3176  c0 3471   class class class wbr 4062  cmpt 4124  ωcom 4659  cfv 5294  (class class class)co 5974  freccfrec 6506   +o coa 6529  cen 6855  Fincfn 6857  0cc0 7967  1c1 7968   + caddc 7970  cz 9414  chash 10964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-ihash 10965
This theorem is referenced by:  hashunsng  10996  fihashssdif  11007  hashxp  11015  fsumconst  11931  phiprmpw  12710  4sqlem11  12890  lgsquadlem2  15722  lgsquadlem3  15723
  Copyright terms: Public domain W3C validator