Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashun GIF version

Theorem hashun 10579
 Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))

Proof of Theorem hashun
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6659 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
323ad2ant1 1003 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6659 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 119 . . . . 5 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
653ad2ant2 1004 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ∃𝑚 ∈ ω 𝐵𝑚)
76adantr 274 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
8 simplrl 525 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
9 simprl 521 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
10 eqid 2140 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110omgadd 10576 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
128, 9, 11syl2anc 409 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
13 nnacl 6380 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ ω)
148, 9, 13syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ∈ ω)
15 enrefg 6662 . . . . . . 7 ((𝑛 +o 𝑚) ∈ ω → (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚))
1614, 15syl 14 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚))
17 hashennn 10554 . . . . . 6 (((𝑛 +o 𝑚) ∈ ω ∧ (𝑛 +o 𝑚) ≈ (𝑛 +o 𝑚)) → (♯‘(𝑛 +o 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)))
1814, 16, 17syl2anc 409 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +o 𝑚)) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(𝑛 +o 𝑚)))
19 vex 2690 . . . . . . . 8 𝑛 ∈ V
2019enref 6663 . . . . . . 7 𝑛𝑛
21 hashennn 10554 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑛𝑛) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
228, 20, 21sylancl 410 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑛) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
23 vex 2690 . . . . . . . 8 𝑚 ∈ V
2423enref 6663 . . . . . . 7 𝑚𝑚
25 hashennn 10554 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑚𝑚) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
269, 24, 25sylancl 410 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝑚) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2722, 26oveq12d 5796 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝑛) + (♯‘𝑚)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) + (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
2812, 18, 273eqtr4d 2183 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝑛 +o 𝑚)) = ((♯‘𝑛) + (♯‘𝑚)))
29 simpll1 1021 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴 ∈ Fin)
30 simpll2 1022 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵 ∈ Fin)
31 simpll3 1023 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) = ∅)
32 simplrr 526 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
33 simprr 522 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝑚)
3429, 30, 31, 8, 9, 32, 33hashunlem 10578 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ≈ (𝑛 +o 𝑚))
35 unfidisj 6814 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
3635ad2antrr 480 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵) ∈ Fin)
37 nnfi 6770 . . . . . . . 8 ((𝑛 +o 𝑚) ∈ ω → (𝑛 +o 𝑚) ∈ Fin)
3813, 37syl 14 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ Fin)
398, 9, 38syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛 +o 𝑚) ∈ Fin)
40 hashen 10558 . . . . . 6 (((𝐴𝐵) ∈ Fin ∧ (𝑛 +o 𝑚) ∈ Fin) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +o 𝑚)))
4136, 39, 40syl2anc 409 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)) ↔ (𝐴𝐵) ≈ (𝑛 +o 𝑚)))
4234, 41mpbird 166 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = (♯‘(𝑛 +o 𝑚)))
43 nnfi 6770 . . . . . . . 8 (𝑛 ∈ ω → 𝑛 ∈ Fin)
448, 43syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ Fin)
45 hashen 10558 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑛 ∈ Fin) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4629, 44, 45syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) = (♯‘𝑛) ↔ 𝐴𝑛))
4732, 46mpbird 166 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐴) = (♯‘𝑛))
48 nnfi 6770 . . . . . . . 8 (𝑚 ∈ ω → 𝑚 ∈ Fin)
499, 48syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ Fin)
50 hashen 10558 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑚 ∈ Fin) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5130, 49, 50syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐵) = (♯‘𝑚) ↔ 𝐵𝑚))
5233, 51mpbird 166 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐵) = (♯‘𝑚))
5347, 52oveq12d 5796 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝑛) + (♯‘𝑚)))
5428, 42, 533eqtr4d 2183 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
557, 54rexlimddv 2555 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
563, 55rexlimddv 2555 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∃wrex 2418   ∪ cun 3070   ∩ cin 3071  ∅c0 3364   class class class wbr 3933   ↦ cmpt 3993  ωcom 4508  ‘cfv 5127  (class class class)co 5778  freccfrec 6291   +o coa 6314   ≈ cen 6636  Fincfn 6638  0cc0 7640  1c1 7641   + caddc 7643  ℤcz 9074  ♯chash 10549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-addcom 7740  ax-addass 7742  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-0id 7748  ax-rnegex 7749  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-ltadd 7756 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-irdg 6271  df-frec 6292  df-1o 6317  df-oadd 6321  df-er 6433  df-en 6639  df-dom 6640  df-fin 6641  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-inn 8741  df-n0 8998  df-z 9075  df-uz 9347  df-ihash 10550 This theorem is referenced by:  hashunsng  10581  fihashssdif  10592  hashxp  10600  fsumconst  11251  phiprmpw  11925
 Copyright terms: Public domain W3C validator