ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup GIF version

Theorem xrmaxltsup 11404
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 1002 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ∈ ℝ*)
2 simpl2 1003 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ∈ ℝ*)
3 xrmaxcl 11398 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
41, 2, 3syl2anc 411 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
5 simpl3 1004 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐶 ∈ ℝ*)
6 xrmax1sup 11399 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
763adant3 1019 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
87adantr 276 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
9 simpr 110 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
101, 4, 5, 8, 9xrlelttrd 9879 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 < 𝐶)
11 xrmax2sup 11400 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
121, 2, 11syl2anc 411 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
132, 4, 5, 12, 9xrlelttrd 9879 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 306 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 simplr 528 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpllr 534 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
17 xrmaxrecl 11401 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
1815, 16, 17syl2anc 411 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
19 simp-4r 542 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐵 < 𝐶))
20 simpr 110 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
21 maxltsup 11365 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2215, 16, 20, 21syl3anc 1249 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2319, 22mpbird 167 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
2418, 23eqbrtrd 4052 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
25 simplr 528 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ)
26 simpllr 534 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ)
27 maxcl 11357 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2825, 26, 27syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2917eleq1d 2262 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3025, 26, 29syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3128, 30mpbird 167 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ)
32 ltpnf 9849 . . . . . . 7 (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
3331, 32syl 14 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
34 simpr 110 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐶 = +∞)
3533, 34breqtrrd 4058 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
36 simprl 529 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
3736ad3antrrr 492 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐴 < 𝐶)
38 nltmnf 9857 . . . . . . . . 9 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
39383ad2ant1 1020 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ 𝐴 < -∞)
4039ad4antr 494 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < -∞)
41 simpr 110 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐶 = -∞)
4241breq2d 4042 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 < 𝐶𝐴 < -∞))
4340, 42mtbird 674 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < 𝐶)
4437, 43pm2.21dd 621 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
45 elxr 9845 . . . . . . . 8 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4645biimpi 120 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
47463ad2ant3 1022 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4847ad3antrrr 492 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4924, 35, 44, 48mpjao3dan 1318 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
5036ad2antrr 488 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 < 𝐶)
51 pnfnlt 9856 . . . . . . . 8 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
52513ad2ant3 1022 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ +∞ < 𝐶)
5352ad3antrrr 492 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐶)
54 simpr 110 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5554breq1d 4040 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐶 ↔ +∞ < 𝐶))
5653, 55mtbird 674 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐶)
5750, 56pm2.21dd 621 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
58 simpr 110 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
59 mnfle 9861 . . . . . . . . 9 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
60593ad2ant2 1021 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐵)
6160ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
6258, 61eqbrtrd 4052 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴𝐵)
63 simp1 999 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6463ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
65 simp2 1000 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6665ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 ∈ ℝ*)
67 xrmaxleim 11390 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6864, 66, 67syl2anc 411 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6962, 68mpd 13 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
70 simprr 531 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
7170ad2antrr 488 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 < 𝐶)
7269, 71eqbrtrd 4052 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
73 elxr 9845 . . . . . . 7 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473biimpi 120 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
75743ad2ant1 1020 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675ad2antrr 488 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7749, 57, 72, 76mpjao3dan 1318 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
78 simplrr 536 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → 𝐵 < 𝐶)
79 breq1 4033 . . . . . 6 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8079adantl 277 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8178, 80mpbid 147 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → +∞ < 𝐶)
8252ad2antrr 488 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
8381, 82pm2.21dd 621 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
84 prcom 3695 . . . . . 6 {𝐵, 𝐴} = {𝐴, 𝐵}
8584supeq1i 7049 . . . . 5 sup({𝐵, 𝐴}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ*, < )
86 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 = -∞)
87 mnfle 9861 . . . . . . . . 9 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
88873ad2ant1 1020 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐴)
8988ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
9086, 89eqbrtrd 4052 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵𝐴)
91 simpll2 1039 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
92 simpll1 1038 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
93 xrmaxleim 11390 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9491, 92, 93syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9590, 94mpd 13 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴)
9685, 95eqtr3id 2240 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐴)
97 simplrl 535 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 < 𝐶)
9896, 97eqbrtrd 4052 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
99 elxr 9845 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10099biimpi 120 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
1011003ad2ant2 1021 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
102101adantr 276 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10377, 83, 98, 102mpjao3dan 1318 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
10414, 103impbida 596 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 979  w3a 980   = wceq 1364  wcel 2164  {cpr 3620   class class class wbr 4030  supcsup 7043  cr 7873  +∞cpnf 8053  -∞cmnf 8054  *cxr 8055   < clt 8056  cle 8057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by:  xrmaxadd  11407  xrltmininf  11416  iooinsup  11423  xmetxpbl  14687  txmetcnp  14697
  Copyright terms: Public domain W3C validator