ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup GIF version

Theorem xrmaxltsup 10866
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 952 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ∈ ℝ*)
2 simpl2 953 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ∈ ℝ*)
3 xrmaxcl 10860 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
41, 2, 3syl2anc 406 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
5 simpl3 954 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐶 ∈ ℝ*)
6 xrmax1sup 10861 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
763adant3 969 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
87adantr 272 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
9 simpr 109 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
101, 4, 5, 8, 9xrlelttrd 9434 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 < 𝐶)
11 xrmax2sup 10862 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
121, 2, 11syl2anc 406 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
132, 4, 5, 12, 9xrlelttrd 9434 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 302 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 simplr 500 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpllr 504 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
17 xrmaxrecl 10863 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
1815, 16, 17syl2anc 406 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
19 simp-4r 512 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐵 < 𝐶))
20 simpr 109 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
21 maxltsup 10830 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2215, 16, 20, 21syl3anc 1184 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2319, 22mpbird 166 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
2418, 23eqbrtrd 3895 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
25 simplr 500 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ)
26 simpllr 504 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ)
27 maxcl 10822 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2825, 26, 27syl2anc 406 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2917eleq1d 2168 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3025, 26, 29syl2anc 406 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3128, 30mpbird 166 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ)
32 ltpnf 9408 . . . . . . 7 (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
3331, 32syl 14 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
34 simpr 109 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐶 = +∞)
3533, 34breqtrrd 3901 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
36 simprl 501 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
3736ad3antrrr 479 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐴 < 𝐶)
38 nltmnf 9415 . . . . . . . . 9 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
39383ad2ant1 970 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ 𝐴 < -∞)
4039ad4antr 481 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < -∞)
41 simpr 109 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐶 = -∞)
4241breq2d 3887 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 < 𝐶𝐴 < -∞))
4340, 42mtbird 639 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < 𝐶)
4437, 43pm2.21dd 590 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
45 elxr 9404 . . . . . . . 8 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4645biimpi 119 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
47463ad2ant3 972 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4847ad3antrrr 479 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4924, 35, 44, 48mpjao3dan 1253 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
5036ad2antrr 475 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 < 𝐶)
51 pnfnlt 9414 . . . . . . . 8 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
52513ad2ant3 972 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ +∞ < 𝐶)
5352ad3antrrr 479 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐶)
54 simpr 109 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5554breq1d 3885 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐶 ↔ +∞ < 𝐶))
5653, 55mtbird 639 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐶)
5750, 56pm2.21dd 590 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
58 simpr 109 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
59 mnfle 9419 . . . . . . . . 9 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
60593ad2ant2 971 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐵)
6160ad3antrrr 479 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
6258, 61eqbrtrd 3895 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴𝐵)
63 simp1 949 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6463ad3antrrr 479 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
65 simp2 950 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6665ad3antrrr 479 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 ∈ ℝ*)
67 xrmaxleim 10852 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6864, 66, 67syl2anc 406 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6962, 68mpd 13 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
70 simprr 502 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
7170ad2antrr 475 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 < 𝐶)
7269, 71eqbrtrd 3895 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
73 elxr 9404 . . . . . . 7 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473biimpi 119 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
75743ad2ant1 970 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675ad2antrr 475 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7749, 57, 72, 76mpjao3dan 1253 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
78 simplrr 506 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → 𝐵 < 𝐶)
79 breq1 3878 . . . . . 6 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8079adantl 273 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8178, 80mpbid 146 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → +∞ < 𝐶)
8252ad2antrr 475 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
8381, 82pm2.21dd 590 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
84 prcom 3546 . . . . . 6 {𝐵, 𝐴} = {𝐴, 𝐵}
8584supeq1i 6790 . . . . 5 sup({𝐵, 𝐴}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ*, < )
86 simpr 109 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 = -∞)
87 mnfle 9419 . . . . . . . . 9 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
88873ad2ant1 970 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐴)
8988ad2antrr 475 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
9086, 89eqbrtrd 3895 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵𝐴)
91 simpll2 989 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
92 simpll1 988 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
93 xrmaxleim 10852 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9491, 92, 93syl2anc 406 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9590, 94mpd 13 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴)
9685, 95syl5eqr 2146 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐴)
97 simplrl 505 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 < 𝐶)
9896, 97eqbrtrd 3895 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
99 elxr 9404 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10099biimpi 119 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
1011003ad2ant2 971 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
102101adantr 272 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10377, 83, 98, 102mpjao3dan 1253 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
10414, 103impbida 566 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 929  w3a 930   = wceq 1299  wcel 1448  {cpr 3475   class class class wbr 3875  supcsup 6784  cr 7499  +∞cpnf 7669  -∞cmnf 7670  *cxr 7671   < clt 7672  cle 7673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-sup 6786  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611
This theorem is referenced by:  xrmaxadd  10869  xrltmininf  10878  iooinsup  10885
  Copyright terms: Public domain W3C validator