ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup GIF version

Theorem xrmaxltsup 11423
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 1002 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ∈ ℝ*)
2 simpl2 1003 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ∈ ℝ*)
3 xrmaxcl 11417 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
41, 2, 3syl2anc 411 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
5 simpl3 1004 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐶 ∈ ℝ*)
6 xrmax1sup 11418 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
763adant3 1019 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
87adantr 276 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
9 simpr 110 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
101, 4, 5, 8, 9xrlelttrd 9885 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 < 𝐶)
11 xrmax2sup 11419 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
121, 2, 11syl2anc 411 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
132, 4, 5, 12, 9xrlelttrd 9885 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 306 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 simplr 528 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpllr 534 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
17 xrmaxrecl 11420 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
1815, 16, 17syl2anc 411 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
19 simp-4r 542 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐵 < 𝐶))
20 simpr 110 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
21 maxltsup 11383 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2215, 16, 20, 21syl3anc 1249 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2319, 22mpbird 167 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
2418, 23eqbrtrd 4055 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
25 simplr 528 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ)
26 simpllr 534 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ)
27 maxcl 11375 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2825, 26, 27syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2917eleq1d 2265 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3025, 26, 29syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3128, 30mpbird 167 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ)
32 ltpnf 9855 . . . . . . 7 (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
3331, 32syl 14 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
34 simpr 110 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐶 = +∞)
3533, 34breqtrrd 4061 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
36 simprl 529 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
3736ad3antrrr 492 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐴 < 𝐶)
38 nltmnf 9863 . . . . . . . . 9 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
39383ad2ant1 1020 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ 𝐴 < -∞)
4039ad4antr 494 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < -∞)
41 simpr 110 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐶 = -∞)
4241breq2d 4045 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 < 𝐶𝐴 < -∞))
4340, 42mtbird 674 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < 𝐶)
4437, 43pm2.21dd 621 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
45 elxr 9851 . . . . . . . 8 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4645biimpi 120 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
47463ad2ant3 1022 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4847ad3antrrr 492 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4924, 35, 44, 48mpjao3dan 1318 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
5036ad2antrr 488 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 < 𝐶)
51 pnfnlt 9862 . . . . . . . 8 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
52513ad2ant3 1022 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ +∞ < 𝐶)
5352ad3antrrr 492 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐶)
54 simpr 110 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5554breq1d 4043 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐶 ↔ +∞ < 𝐶))
5653, 55mtbird 674 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐶)
5750, 56pm2.21dd 621 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
58 simpr 110 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
59 mnfle 9867 . . . . . . . . 9 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
60593ad2ant2 1021 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐵)
6160ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
6258, 61eqbrtrd 4055 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴𝐵)
63 simp1 999 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6463ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
65 simp2 1000 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6665ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 ∈ ℝ*)
67 xrmaxleim 11409 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6864, 66, 67syl2anc 411 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6962, 68mpd 13 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
70 simprr 531 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
7170ad2antrr 488 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 < 𝐶)
7269, 71eqbrtrd 4055 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
73 elxr 9851 . . . . . . 7 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473biimpi 120 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
75743ad2ant1 1020 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675ad2antrr 488 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7749, 57, 72, 76mpjao3dan 1318 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
78 simplrr 536 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → 𝐵 < 𝐶)
79 breq1 4036 . . . . . 6 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8079adantl 277 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8178, 80mpbid 147 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → +∞ < 𝐶)
8252ad2antrr 488 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
8381, 82pm2.21dd 621 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
84 prcom 3698 . . . . . 6 {𝐵, 𝐴} = {𝐴, 𝐵}
8584supeq1i 7054 . . . . 5 sup({𝐵, 𝐴}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ*, < )
86 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 = -∞)
87 mnfle 9867 . . . . . . . . 9 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
88873ad2ant1 1020 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐴)
8988ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
9086, 89eqbrtrd 4055 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵𝐴)
91 simpll2 1039 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
92 simpll1 1038 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
93 xrmaxleim 11409 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9491, 92, 93syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9590, 94mpd 13 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴)
9685, 95eqtr3id 2243 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐴)
97 simplrl 535 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 < 𝐶)
9896, 97eqbrtrd 4055 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
99 elxr 9851 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10099biimpi 120 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
1011003ad2ant2 1021 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
102101adantr 276 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10377, 83, 98, 102mpjao3dan 1318 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
10414, 103impbida 596 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 979  w3a 980   = wceq 1364  wcel 2167  {cpr 3623   class class class wbr 4033  supcsup 7048  cr 7878  +∞cpnf 8058  -∞cmnf 8059  *cxr 8060   < clt 8061  cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  xrmaxadd  11426  xrltmininf  11435  iooinsup  11442  xmetxpbl  14744  txmetcnp  14754
  Copyright terms: Public domain W3C validator