ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup GIF version

Theorem xrmaxltsup 11613
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 1003 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ∈ ℝ*)
2 simpl2 1004 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ∈ ℝ*)
3 xrmaxcl 11607 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
41, 2, 3syl2anc 411 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
5 simpl3 1005 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐶 ∈ ℝ*)
6 xrmax1sup 11608 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
763adant3 1020 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
87adantr 276 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
9 simpr 110 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
101, 4, 5, 8, 9xrlelttrd 9939 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 < 𝐶)
11 xrmax2sup 11609 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
121, 2, 11syl2anc 411 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
132, 4, 5, 12, 9xrlelttrd 9939 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 306 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 simplr 528 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpllr 534 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
17 xrmaxrecl 11610 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
1815, 16, 17syl2anc 411 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
19 simp-4r 542 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐵 < 𝐶))
20 simpr 110 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
21 maxltsup 11573 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2215, 16, 20, 21syl3anc 1250 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2319, 22mpbird 167 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
2418, 23eqbrtrd 4069 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
25 simplr 528 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ)
26 simpllr 534 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ)
27 maxcl 11565 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2825, 26, 27syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2917eleq1d 2275 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3025, 26, 29syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3128, 30mpbird 167 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ)
32 ltpnf 9909 . . . . . . 7 (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
3331, 32syl 14 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
34 simpr 110 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐶 = +∞)
3533, 34breqtrrd 4075 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
36 simprl 529 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
3736ad3antrrr 492 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐴 < 𝐶)
38 nltmnf 9917 . . . . . . . . 9 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
39383ad2ant1 1021 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ 𝐴 < -∞)
4039ad4antr 494 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < -∞)
41 simpr 110 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐶 = -∞)
4241breq2d 4059 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 < 𝐶𝐴 < -∞))
4340, 42mtbird 675 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < 𝐶)
4437, 43pm2.21dd 621 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
45 elxr 9905 . . . . . . . 8 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4645biimpi 120 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
47463ad2ant3 1023 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4847ad3antrrr 492 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4924, 35, 44, 48mpjao3dan 1320 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
5036ad2antrr 488 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 < 𝐶)
51 pnfnlt 9916 . . . . . . . 8 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
52513ad2ant3 1023 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ +∞ < 𝐶)
5352ad3antrrr 492 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐶)
54 simpr 110 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5554breq1d 4057 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐶 ↔ +∞ < 𝐶))
5653, 55mtbird 675 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐶)
5750, 56pm2.21dd 621 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
58 simpr 110 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
59 mnfle 9921 . . . . . . . . 9 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
60593ad2ant2 1022 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐵)
6160ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
6258, 61eqbrtrd 4069 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴𝐵)
63 simp1 1000 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6463ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
65 simp2 1001 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6665ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 ∈ ℝ*)
67 xrmaxleim 11599 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6864, 66, 67syl2anc 411 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6962, 68mpd 13 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
70 simprr 531 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
7170ad2antrr 488 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 < 𝐶)
7269, 71eqbrtrd 4069 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
73 elxr 9905 . . . . . . 7 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473biimpi 120 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
75743ad2ant1 1021 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675ad2antrr 488 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7749, 57, 72, 76mpjao3dan 1320 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
78 simplrr 536 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → 𝐵 < 𝐶)
79 breq1 4050 . . . . . 6 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8079adantl 277 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8178, 80mpbid 147 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → +∞ < 𝐶)
8252ad2antrr 488 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
8381, 82pm2.21dd 621 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
84 prcom 3710 . . . . . 6 {𝐵, 𝐴} = {𝐴, 𝐵}
8584supeq1i 7097 . . . . 5 sup({𝐵, 𝐴}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ*, < )
86 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 = -∞)
87 mnfle 9921 . . . . . . . . 9 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
88873ad2ant1 1021 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐴)
8988ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
9086, 89eqbrtrd 4069 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵𝐴)
91 simpll2 1040 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
92 simpll1 1039 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
93 xrmaxleim 11599 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9491, 92, 93syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9590, 94mpd 13 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴)
9685, 95eqtr3id 2253 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐴)
97 simplrl 535 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 < 𝐶)
9896, 97eqbrtrd 4069 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
99 elxr 9905 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10099biimpi 120 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
1011003ad2ant2 1022 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
102101adantr 276 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10377, 83, 98, 102mpjao3dan 1320 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
10414, 103impbida 596 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 980  w3a 981   = wceq 1373  wcel 2177  {cpr 3635   class class class wbr 4047  supcsup 7091  cr 7931  +∞cpnf 8111  -∞cmnf 8112  *cxr 8113   < clt 8114  cle 8115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354
This theorem is referenced by:  xrmaxadd  11616  xrltmininf  11625  iooinsup  11632  xmetxpbl  15024  txmetcnp  15034
  Copyright terms: Public domain W3C validator