ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup GIF version

Theorem xrmaxltsup 11185
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 989 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ∈ ℝ*)
2 simpl2 990 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ∈ ℝ*)
3 xrmaxcl 11179 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
41, 2, 3syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
5 simpl3 991 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐶 ∈ ℝ*)
6 xrmax1sup 11180 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
763adant3 1006 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
87adantr 274 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
9 simpr 109 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
101, 4, 5, 8, 9xrlelttrd 9737 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐴 < 𝐶)
11 xrmax2sup 11181 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
121, 2, 11syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
132, 4, 5, 12, 9xrlelttrd 9737 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 304 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 simplr 520 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
16 simpllr 524 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
17 xrmaxrecl 11182 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
1815, 16, 17syl2anc 409 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
19 simp-4r 532 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐵 < 𝐶))
20 simpr 109 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
21 maxltsup 11146 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2215, 16, 20, 21syl3anc 1227 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
2319, 22mpbird 166 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
2418, 23eqbrtrd 3998 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
25 simplr 520 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ)
26 simpllr 524 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ)
27 maxcl 11138 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2825, 26, 27syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2917eleq1d 2233 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3025, 26, 29syl2anc 409 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ ↔ sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ))
3128, 30mpbird 166 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ)
32 ltpnf 9707 . . . . . . 7 (sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
3331, 32syl 14 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < +∞)
34 simpr 109 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → 𝐶 = +∞)
3533, 34breqtrrd 4004 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
36 simprl 521 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
3736ad3antrrr 484 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐴 < 𝐶)
38 nltmnf 9715 . . . . . . . . 9 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
39383ad2ant1 1007 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ 𝐴 < -∞)
4039ad4antr 486 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < -∞)
41 simpr 109 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → 𝐶 = -∞)
4241breq2d 3988 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 < 𝐶𝐴 < -∞))
4340, 42mtbird 663 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → ¬ 𝐴 < 𝐶)
4437, 43pm2.21dd 610 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐶 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
45 elxr 9703 . . . . . . . 8 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4645biimpi 119 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
47463ad2ant3 1009 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4847ad3antrrr 484 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
4924, 35, 44, 48mpjao3dan 1296 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
5036ad2antrr 480 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 < 𝐶)
51 pnfnlt 9714 . . . . . . . 8 (𝐶 ∈ ℝ* → ¬ +∞ < 𝐶)
52513ad2ant3 1009 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ +∞ < 𝐶)
5352ad3antrrr 484 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐶)
54 simpr 109 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5554breq1d 3986 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐶 ↔ +∞ < 𝐶))
5653, 55mtbird 663 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐶)
5750, 56pm2.21dd 610 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
58 simpr 109 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
59 mnfle 9719 . . . . . . . . 9 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
60593ad2ant2 1008 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐵)
6160ad3antrrr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
6258, 61eqbrtrd 3998 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴𝐵)
63 simp1 986 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6463ad3antrrr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
65 simp2 987 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6665ad3antrrr 484 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 ∈ ℝ*)
67 xrmaxleim 11171 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6864, 66, 67syl2anc 409 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
6962, 68mpd 13 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
70 simprr 522 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
7170ad2antrr 480 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐵 < 𝐶)
7269, 71eqbrtrd 3998 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
73 elxr 9703 . . . . . . 7 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473biimpi 119 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
75743ad2ant1 1007 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675ad2antrr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7749, 57, 72, 76mpjao3dan 1296 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
78 simplrr 526 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → 𝐵 < 𝐶)
79 breq1 3979 . . . . . 6 (𝐵 = +∞ → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8079adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → (𝐵 < 𝐶 ↔ +∞ < 𝐶))
8178, 80mpbid 146 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → +∞ < 𝐶)
8252ad2antrr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → ¬ +∞ < 𝐶)
8381, 82pm2.21dd 610 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = +∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
84 prcom 3646 . . . . . 6 {𝐵, 𝐴} = {𝐴, 𝐵}
8584supeq1i 6944 . . . . 5 sup({𝐵, 𝐴}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ*, < )
86 simpr 109 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 = -∞)
87 mnfle 9719 . . . . . . . . 9 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
88873ad2ant1 1007 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -∞ ≤ 𝐴)
8988ad2antrr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
9086, 89eqbrtrd 3998 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵𝐴)
91 simpll2 1026 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
92 simpll1 1025 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
93 xrmaxleim 11171 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9491, 92, 93syl2anc 409 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → (𝐵𝐴 → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴))
9590, 94mpd 13 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐵, 𝐴}, ℝ*, < ) = 𝐴)
9685, 95eqtr3id 2211 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐴)
97 simplrl 525 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → 𝐴 < 𝐶)
9896, 97eqbrtrd 3998 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) ∧ 𝐵 = -∞) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
99 elxr 9703 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10099biimpi 119 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
1011003ad2ant2 1008 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
102101adantr 274 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
10377, 83, 98, 102mpjao3dan 1296 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶)
10414, 103impbida 586 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 966  w3a 967   = wceq 1342  wcel 2135  {cpr 3571   class class class wbr 3976  supcsup 6938  cr 7743  +∞cpnf 7921  -∞cmnf 7922  *cxr 7923   < clt 7924  cle 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927
This theorem is referenced by:  xrmaxadd  11188  xrltmininf  11197  iooinsup  11204  xmetxpbl  13055  txmetcnp  13065
  Copyright terms: Public domain W3C validator