ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6573
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3605 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 4972 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6540 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6540 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2235 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  {csn 3594  cima 4631  [cec 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-ec 6540
This theorem is referenced by:  eceq1d  6574  ecelqsg  6591  snec  6599  qliftfun  6620  qliftfuns  6622  qliftval  6624  ecoptocl  6625  eroveu  6629  th3qlem1  6640  th3qlem2  6641  th3q  6643  dmaddpqlem  7379  nqpi  7380  1qec  7390  nqnq0  7443  nq0nn  7444  mulnnnq0  7452  addpinq1  7466  caucvgsrlemfv  7793  caucvgsr  7804  pitonnlem1  7847  axcaucvg  7902  divsfvalg  12754
  Copyright terms: Public domain W3C validator