| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq1 | GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3646 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 5028 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 6632 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 6632 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2264 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {csn 3635 “ cima 4683 [cec 6628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-cnv 4688 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-ec 6632 |
| This theorem is referenced by: eceq1d 6666 ecelqsg 6685 snec 6693 qliftfun 6714 qliftfuns 6716 qliftval 6718 ecoptocl 6719 eroveu 6723 th3qlem1 6734 th3qlem2 6735 th3q 6737 dmaddpqlem 7503 nqpi 7504 1qec 7514 nqnq0 7567 nq0nn 7568 mulnnnq0 7576 addpinq1 7590 caucvgsrlemfv 7917 caucvgsr 7928 pitonnlem1 7971 axcaucvg 8026 divsfval 13210 divsfvalg 13211 qusghm 13668 znzrhval 14459 |
| Copyright terms: Public domain | W3C validator |