ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6624
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3630 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 5006 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6591 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6591 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2251 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {csn 3619  cima 4663  [cec 6587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-ec 6591
This theorem is referenced by:  eceq1d  6625  ecelqsg  6644  snec  6652  qliftfun  6673  qliftfuns  6675  qliftval  6677  ecoptocl  6678  eroveu  6682  th3qlem1  6693  th3qlem2  6694  th3q  6696  dmaddpqlem  7439  nqpi  7440  1qec  7450  nqnq0  7503  nq0nn  7504  mulnnnq0  7512  addpinq1  7526  caucvgsrlemfv  7853  caucvgsr  7864  pitonnlem1  7907  axcaucvg  7962  divsfval  12914  divsfvalg  12915  qusghm  13355  znzrhval  14146
  Copyright terms: Public domain W3C validator