ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6705
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3677 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 5064 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6672 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6672 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  {csn 3666  cima 4719  [cec 6668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-ec 6672
This theorem is referenced by:  eceq1d  6706  ecelqsg  6725  snec  6733  qliftfun  6754  qliftfuns  6756  qliftval  6758  ecoptocl  6759  eroveu  6763  th3qlem1  6774  th3qlem2  6775  th3q  6777  dmaddpqlem  7552  nqpi  7553  1qec  7563  nqnq0  7616  nq0nn  7617  mulnnnq0  7625  addpinq1  7639  caucvgsrlemfv  7966  caucvgsr  7977  pitonnlem1  8020  axcaucvg  8075  divsfval  13347  divsfvalg  13348  qusghm  13805  znzrhval  14596
  Copyright terms: Public domain W3C validator