ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6723
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3677 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 5068 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6690 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6690 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  {csn 3666  cima 4722  [cec 6686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-ec 6690
This theorem is referenced by:  eceq1d  6724  ecelqsg  6743  snec  6751  qliftfun  6772  qliftfuns  6774  qliftval  6776  ecoptocl  6777  eroveu  6781  th3qlem1  6792  th3qlem2  6793  th3q  6795  dmaddpqlem  7572  nqpi  7573  1qec  7583  nqnq0  7636  nq0nn  7637  mulnnnq0  7645  addpinq1  7659  caucvgsrlemfv  7986  caucvgsr  7997  pitonnlem1  8040  axcaucvg  8095  divsfval  13369  divsfvalg  13370  qusghm  13827  znzrhval  14619
  Copyright terms: Public domain W3C validator