ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6622
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3629 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 5005 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6589 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6589 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2251 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {csn 3618  cima 4662  [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-ec 6589
This theorem is referenced by:  eceq1d  6623  ecelqsg  6642  snec  6650  qliftfun  6671  qliftfuns  6673  qliftval  6675  ecoptocl  6676  eroveu  6680  th3qlem1  6691  th3qlem2  6692  th3q  6694  dmaddpqlem  7437  nqpi  7438  1qec  7448  nqnq0  7501  nq0nn  7502  mulnnnq0  7510  addpinq1  7524  caucvgsrlemfv  7851  caucvgsr  7862  pitonnlem1  7905  axcaucvg  7960  divsfval  12911  divsfvalg  12912  qusghm  13352  znzrhval  14135
  Copyright terms: Public domain W3C validator