| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq1 | GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 5064 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 6672 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 6672 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {csn 3666 “ cima 4719 [cec 6668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-ec 6672 |
| This theorem is referenced by: eceq1d 6706 ecelqsg 6725 snec 6733 qliftfun 6754 qliftfuns 6756 qliftval 6758 ecoptocl 6759 eroveu 6763 th3qlem1 6774 th3qlem2 6775 th3q 6777 dmaddpqlem 7552 nqpi 7553 1qec 7563 nqnq0 7616 nq0nn 7617 mulnnnq0 7625 addpinq1 7639 caucvgsrlemfv 7966 caucvgsr 7977 pitonnlem1 8020 axcaucvg 8075 divsfval 13347 divsfvalg 13348 qusghm 13805 znzrhval 14596 |
| Copyright terms: Public domain | W3C validator |