ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6628
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3634 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 5010 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6595 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6595 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2254 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {csn 3623  cima 4667  [cec 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-ec 6595
This theorem is referenced by:  eceq1d  6629  ecelqsg  6648  snec  6656  qliftfun  6677  qliftfuns  6679  qliftval  6681  ecoptocl  6682  eroveu  6686  th3qlem1  6697  th3qlem2  6698  th3q  6700  dmaddpqlem  7446  nqpi  7447  1qec  7457  nqnq0  7510  nq0nn  7511  mulnnnq0  7519  addpinq1  7533  caucvgsrlemfv  7860  caucvgsr  7871  pitonnlem1  7914  axcaucvg  7969  divsfval  12981  divsfvalg  12982  qusghm  13422  znzrhval  14213
  Copyright terms: Public domain W3C validator