ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6572
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3605 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 4972 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6539 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6539 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2235 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  {csn 3594  cima 4631  [cec 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-ec 6539
This theorem is referenced by:  eceq1d  6573  ecelqsg  6590  snec  6598  qliftfun  6619  qliftfuns  6621  qliftval  6623  ecoptocl  6624  eroveu  6628  th3qlem1  6639  th3qlem2  6640  th3q  6642  dmaddpqlem  7378  nqpi  7379  1qec  7389  nqnq0  7442  nq0nn  7443  mulnnnq0  7451  addpinq1  7465  caucvgsrlemfv  7792  caucvgsr  7803  pitonnlem1  7846  axcaucvg  7901  divsfvalg  12753
  Copyright terms: Public domain W3C validator