ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 GIF version

Theorem eceq1 6636
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3634 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21imaeq2d 5010 . 2 (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵}))
3 df-ec 6603 . 2 [𝐴]𝐶 = (𝐶 “ {𝐴})
4 df-ec 6603 . 2 [𝐵]𝐶 = (𝐶 “ {𝐵})
52, 3, 43eqtr4g 2254 1 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {csn 3623  cima 4667  [cec 6599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-ec 6603
This theorem is referenced by:  eceq1d  6637  ecelqsg  6656  snec  6664  qliftfun  6685  qliftfuns  6687  qliftval  6689  ecoptocl  6690  eroveu  6694  th3qlem1  6705  th3qlem2  6706  th3q  6708  dmaddpqlem  7461  nqpi  7462  1qec  7472  nqnq0  7525  nq0nn  7526  mulnnnq0  7534  addpinq1  7548  caucvgsrlemfv  7875  caucvgsr  7886  pitonnlem1  7929  axcaucvg  7984  divsfval  13030  divsfvalg  13031  qusghm  13488  znzrhval  14279
  Copyright terms: Public domain W3C validator