![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1ne0sr | GIF version |
Description: 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) |
Ref | Expression |
---|---|
1ne0sr | ⊢ ¬ 1R = 0R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsosr 7829 | . . 3 ⊢ <R Or R | |
2 | 1sr 7816 | . . 3 ⊢ 1R ∈ R | |
3 | sonr 4352 | . . 3 ⊢ (( <R Or R ∧ 1R ∈ R) → ¬ 1R <R 1R) | |
4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ ¬ 1R <R 1R |
5 | 0lt1sr 7830 | . . 3 ⊢ 0R <R 1R | |
6 | breq1 4036 | . . 3 ⊢ (1R = 0R → (1R <R 1R ↔ 0R <R 1R)) | |
7 | 5, 6 | mpbiri 168 | . 2 ⊢ (1R = 0R → 1R <R 1R) |
8 | 4, 7 | mto 663 | 1 ⊢ ¬ 1R = 0R |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 Or wor 4330 Rcnr 7362 0Rc0r 7363 1Rc1r 7364 <R cltr 7368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7369 df-pli 7370 df-mi 7371 df-lti 7372 df-plpq 7409 df-mpq 7410 df-enq 7412 df-nqqs 7413 df-plqqs 7414 df-mqqs 7415 df-1nqqs 7416 df-rq 7417 df-ltnqqs 7418 df-enq0 7489 df-nq0 7490 df-0nq0 7491 df-plq0 7492 df-mq0 7493 df-inp 7531 df-i1p 7532 df-iplp 7533 df-iltp 7535 df-enr 7791 df-nr 7792 df-ltr 7795 df-0r 7796 df-1r 7797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |