| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltg4i | GIF version | ||
| Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltg4i | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topgen 13010 | . . . . . . 7 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
| 2 | 1 | funmpt2 5307 | . . . . . 6 ⊢ Fun topGen |
| 3 | funrel 5285 | . . . . . 6 ⊢ (Fun topGen → Rel topGen) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ Rel topGen |
| 5 | relelfvdm 5602 | . . . . 5 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
| 7 | eltg 14442 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 9 | 8 | ibi 176 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) |
| 10 | inss2 3393 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 | |
| 11 | 10 | unissi 3872 | . . . 4 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ ∪ 𝒫 𝐴 |
| 12 | unipw 4260 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 13 | 11, 12 | sseqtri 3226 | . . 3 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴 |
| 14 | 13 | a1i 9 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴) |
| 15 | 9, 14 | eqssd 3209 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {cab 2190 Vcvv 2771 ∩ cin 3164 ⊆ wss 3165 𝒫 cpw 3615 ∪ cuni 3849 dom cdm 4673 Rel wrel 4678 Fun wfun 5262 ‘cfv 5268 topGenctg 13004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-topgen 13010 |
| This theorem is referenced by: eltg3 14447 tgdom 14462 tgidm 14464 |
| Copyright terms: Public domain | W3C validator |