ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg4i GIF version

Theorem eltg4i 12596
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))

Proof of Theorem eltg4i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topgen 12513 . . . . . . 7 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5221 . . . . . 6 Fun topGen
3 funrel 5199 . . . . . 6 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . . 5 Rel topGen
5 relelfvdm 5512 . . . . 5 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 421 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 eltg 12593 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
86, 7syl 14 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
98ibi 175 . 2 (𝐴 ∈ (topGen‘𝐵) → 𝐴 (𝐵 ∩ 𝒫 𝐴))
10 inss2 3338 . . . . 5 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
1110unissi 3806 . . . 4 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
12 unipw 4189 . . . 4 𝒫 𝐴 = 𝐴
1311, 12sseqtri 3171 . . 3 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴
1413a1i 9 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴)
159, 14eqssd 3154 1 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1342  wcel 2135  {cab 2150  Vcvv 2721  cin 3110  wss 3111  𝒫 cpw 3553   cuni 3783  dom cdm 4598  Rel wrel 4603  Fun wfun 5176  cfv 5182  topGenctg 12507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-topgen 12513
This theorem is referenced by:  eltg3  12598  tgdom  12613  tgidm  12615
  Copyright terms: Public domain W3C validator