ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg4i GIF version

Theorem eltg4i 14234
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))

Proof of Theorem eltg4i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topgen 12874 . . . . . . 7 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5294 . . . . . 6 Fun topGen
3 funrel 5272 . . . . . 6 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . . 5 Rel topGen
5 relelfvdm 5587 . . . . 5 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 424 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 eltg 14231 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
86, 7syl 14 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
98ibi 176 . 2 (𝐴 ∈ (topGen‘𝐵) → 𝐴 (𝐵 ∩ 𝒫 𝐴))
10 inss2 3381 . . . . 5 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
1110unissi 3859 . . . 4 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
12 unipw 4247 . . . 4 𝒫 𝐴 = 𝐴
1311, 12sseqtri 3214 . . 3 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴
1413a1i 9 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴)
159, 14eqssd 3197 1 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  {cab 2179  Vcvv 2760  cin 3153  wss 3154  𝒫 cpw 3602   cuni 3836  dom cdm 4660  Rel wrel 4665  Fun wfun 5249  cfv 5255  topGenctg 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-topgen 12874
This theorem is referenced by:  eltg3  14236  tgdom  14251  tgidm  14253
  Copyright terms: Public domain W3C validator