![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltg4i | GIF version |
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
eltg4i | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 12874 | . . . . . . 7 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
2 | 1 | funmpt2 5294 | . . . . . 6 ⊢ Fun topGen |
3 | funrel 5272 | . . . . . 6 ⊢ (Fun topGen → Rel topGen) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ Rel topGen |
5 | relelfvdm 5587 | . . . . 5 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
7 | eltg 14231 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
9 | 8 | ibi 176 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) |
10 | inss2 3381 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 | |
11 | 10 | unissi 3859 | . . . 4 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ ∪ 𝒫 𝐴 |
12 | unipw 4247 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
13 | 11, 12 | sseqtri 3214 | . . 3 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴 |
14 | 13 | a1i 9 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴) |
15 | 9, 14 | eqssd 3197 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 ∩ cin 3153 ⊆ wss 3154 𝒫 cpw 3602 ∪ cuni 3836 dom cdm 4660 Rel wrel 4665 Fun wfun 5249 ‘cfv 5255 topGenctg 12868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-topgen 12874 |
This theorem is referenced by: eltg3 14236 tgdom 14251 tgidm 14253 |
Copyright terms: Public domain | W3C validator |