![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltg4i | GIF version |
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
eltg4i | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 11923 | . . . . . . 7 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
2 | 1 | funmpt2 5098 | . . . . . 6 ⊢ Fun topGen |
3 | funrel 5076 | . . . . . 6 ⊢ (Fun topGen → Rel topGen) | |
4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ Rel topGen |
5 | relelfvdm 5385 | . . . . 5 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
6 | 4, 5 | mpan 418 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
7 | eltg 12003 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
9 | 8 | ibi 175 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) |
10 | inss2 3244 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 | |
11 | 10 | unissi 3706 | . . . 4 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ ∪ 𝒫 𝐴 |
12 | unipw 4077 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
13 | 11, 12 | sseqtri 3081 | . . 3 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴 |
14 | 13 | a1i 9 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴) |
15 | 9, 14 | eqssd 3064 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1299 ∈ wcel 1448 {cab 2086 Vcvv 2641 ∩ cin 3020 ⊆ wss 3021 𝒫 cpw 3457 ∪ cuni 3683 dom cdm 4477 Rel wrel 4482 Fun wfun 5053 ‘cfv 5059 topGenctg 11917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-sbc 2863 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-topgen 11923 |
This theorem is referenced by: eltg3 12008 tgdom 12023 tgidm 12025 |
Copyright terms: Public domain | W3C validator |