ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg4i GIF version

Theorem eltg4i 14602
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))

Proof of Theorem eltg4i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topgen 13167 . . . . . . 7 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5319 . . . . . 6 Fun topGen
3 funrel 5297 . . . . . 6 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . . 5 Rel topGen
5 relelfvdm 5621 . . . . 5 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 424 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 eltg 14599 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
86, 7syl 14 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
98ibi 176 . 2 (𝐴 ∈ (topGen‘𝐵) → 𝐴 (𝐵 ∩ 𝒫 𝐴))
10 inss2 3398 . . . . 5 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
1110unissi 3879 . . . 4 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
12 unipw 4269 . . . 4 𝒫 𝐴 = 𝐴
1311, 12sseqtri 3231 . . 3 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴
1413a1i 9 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴)
159, 14eqssd 3214 1 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  cin 3169  wss 3170  𝒫 cpw 3621   cuni 3856  dom cdm 4683  Rel wrel 4688  Fun wfun 5274  cfv 5280  topGenctg 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-topgen 13167
This theorem is referenced by:  eltg3  14604  tgdom  14619  tgidm  14621
  Copyright terms: Public domain W3C validator