![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltg4i | GIF version |
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
eltg4i | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 12871 | . . . . . . 7 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
2 | 1 | funmpt2 5293 | . . . . . 6 ⊢ Fun topGen |
3 | funrel 5271 | . . . . . 6 ⊢ (Fun topGen → Rel topGen) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ Rel topGen |
5 | relelfvdm 5586 | . . . . 5 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) |
7 | eltg 14220 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
9 | 8 | ibi 176 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) |
10 | inss2 3380 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 | |
11 | 10 | unissi 3858 | . . . 4 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ ∪ 𝒫 𝐴 |
12 | unipw 4246 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
13 | 11, 12 | sseqtri 3213 | . . 3 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴 |
14 | 13 | a1i 9 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴) |
15 | 9, 14 | eqssd 3196 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 ∩ cin 3152 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 dom cdm 4659 Rel wrel 4664 Fun wfun 5248 ‘cfv 5254 topGenctg 12865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-topgen 12871 |
This theorem is referenced by: eltg3 14225 tgdom 14240 tgidm 14242 |
Copyright terms: Public domain | W3C validator |