![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > redivap | GIF version |
Description: Real part of a division. Related to remul2 10885. (Contributed by Jim Kingdon, 14-Jun-2020.) |
Ref | Expression |
---|---|
redivap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 266 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0))) | |
2 | 3anass 982 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0))) | |
3 | 1, 2 | bitr4i 187 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0)) |
4 | rerecclap 8690 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℝ) | |
5 | 4 | anim1i 340 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
6 | 3, 5 | sylbir 135 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
7 | remul2 10885 | . . 3 ⊢ (((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℜ‘𝐴))) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℜ‘𝐴))) |
9 | recn 7947 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
10 | divrecap2 8649 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
11 | 10 | fveq2d 5521 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = (ℜ‘((1 / 𝐵) · 𝐴))) |
12 | 9, 11 | syl3an2 1272 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = (ℜ‘((1 / 𝐵) · 𝐴))) |
13 | recl 10865 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
14 | 13 | recnd 7989 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
15 | 14 | 3ad2ant1 1018 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘𝐴) ∈ ℂ) |
16 | 9 | 3ad2ant2 1019 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) |
17 | simp3 999 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐵 # 0) | |
18 | 15, 16, 17 | divrecap2d 8754 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((ℜ‘𝐴) / 𝐵) = ((1 / 𝐵) · (ℜ‘𝐴))) |
19 | 8, 12, 18 | 3eqtr4d 2220 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 ℂcc 7812 ℝcr 7813 0cc0 7814 1c1 7815 · cmul 7819 # cap 8541 / cdiv 8632 ℜcre 10852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-2 8981 df-cj 10854 df-re 10855 df-im 10856 |
This theorem is referenced by: redivapd 10986 |
Copyright terms: Public domain | W3C validator |