Proof of Theorem mulgaddcomlem
Step | Hyp | Ref
| Expression |
1 | | simp1 995 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) |
2 | 1 | adantr 276 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝐺 ∈ Grp) |
3 | | simp3 997 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
4 | 3 | adantr 276 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝑋 ∈ 𝐵) |
5 | | znegcl 9252 |
. . . . . . 7
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) |
6 | | mulgaddcom.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
7 | | mulgaddcom.t |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
8 | 6, 7 | mulgcl 12856 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ -𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) ∈ 𝐵) |
9 | 5, 8 | syl3an2 1270 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) ∈ 𝐵) |
10 | 9 | adantr 276 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) ∈ 𝐵) |
11 | | eqid 2173 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
12 | 6, 11 | grpinvcl 12778 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) |
13 | 12 | 3adant2 1014 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) |
14 | 13 | adantr 276 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) |
15 | | mulgaddcom.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
16 | 6, 15 | grpass 12744 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑋) ∈ 𝐵)) → ((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)))) |
17 | 2, 4, 10, 14, 16 | syl13anc 1238 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)))) |
18 | 6, 7, 11 | mulgneg 12857 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) = ((invg‘𝐺)‘(𝑦 · 𝑋))) |
19 | 18 | adantr 276 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) = ((invg‘𝐺)‘(𝑦 · 𝑋))) |
20 | 19 | oveq1d 5877 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)) = (((invg‘𝐺)‘(𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋))) |
21 | 6, 7 | mulgcl 12856 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) |
22 | 21 | adantr 276 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑦 · 𝑋) ∈ 𝐵) |
23 | 6, 15, 11 | grpinvadd 12804 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵) → ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg‘𝐺)‘(𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋))) |
24 | 2, 4, 22, 23 | syl3anc 1236 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg‘𝐺)‘(𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋))) |
25 | 19 | oveq2d 5878 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋)) = (((invg‘𝐺)‘𝑋) +
((invg‘𝐺)‘(𝑦 · 𝑋)))) |
26 | 6, 15, 11 | grpinvadd 12804 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg‘𝐺)‘𝑋) +
((invg‘𝐺)‘(𝑦 · 𝑋)))) |
27 | 2, 22, 4, 26 | syl3anc 1236 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg‘𝐺)‘𝑋) +
((invg‘𝐺)‘(𝑦 · 𝑋)))) |
28 | | fveq2 5504 |
. . . . . . . 8
⊢ (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋)))) |
29 | 28 | adantl 277 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋)))) |
30 | 25, 27, 29 | 3eqtr2rd 2213 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) |
31 | 20, 24, 30 | 3eqtr2d 2212 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)) = (((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) |
32 | 31 | oveq2d 5878 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋))) = (𝑋 +
(((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋)))) |
33 | 6, 15, 11 | grpasscan1 12789 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 +
(((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋)) |
34 | 2, 4, 10, 33 | syl3anc 1236 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 +
(((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋)) |
35 | 17, 32, 34 | 3eqtrd 2210 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) = (-𝑦 · 𝑋)) |
36 | 35 | oveq1d 5877 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋)) |
37 | 6, 15 | grpcl 12743 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵) |
38 | 1, 3, 9, 37 | syl3anc 1236 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵) |
39 | 38 | adantr 276 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵) |
40 | 6, 15, 11 | grpasscan2 12790 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) |
41 | 2, 39, 4, 40 | syl3anc 1236 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) |
42 | 36, 41 | eqtr3d 2208 |
1
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) |