Proof of Theorem mulgaddcomlem
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp1 999 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | 
| 2 | 1 | adantr 276 | 
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝐺 ∈ Grp) | 
| 3 |   | simp3 1001 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | 
| 4 | 3 | adantr 276 | 
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝑋 ∈ 𝐵) | 
| 5 |   | znegcl 9357 | 
. . . . . . 7
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) | 
| 6 |   | mulgaddcom.b | 
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) | 
| 7 |   | mulgaddcom.t | 
. . . . . . . 8
⊢  · =
(.g‘𝐺) | 
| 8 | 6, 7 | mulgcl 13269 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ -𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) ∈ 𝐵) | 
| 9 | 5, 8 | syl3an2 1283 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) ∈ 𝐵) | 
| 10 | 9 | adantr 276 | 
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) ∈ 𝐵) | 
| 11 |   | eqid 2196 | 
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 12 | 6, 11 | grpinvcl 13180 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) | 
| 13 | 12 | 3adant2 1018 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) | 
| 14 | 13 | adantr 276 | 
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘𝑋) ∈ 𝐵) | 
| 15 |   | mulgaddcom.p | 
. . . . . 6
⊢  + =
(+g‘𝐺) | 
| 16 | 6, 15 | grpass 13141 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑋) ∈ 𝐵)) → ((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)))) | 
| 17 | 2, 4, 10, 14, 16 | syl13anc 1251 | 
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)))) | 
| 18 | 6, 7, 11 | mulgneg 13270 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) = ((invg‘𝐺)‘(𝑦 · 𝑋))) | 
| 19 | 18 | adantr 276 | 
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) = ((invg‘𝐺)‘(𝑦 · 𝑋))) | 
| 20 | 19 | oveq1d 5937 | 
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)) = (((invg‘𝐺)‘(𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋))) | 
| 21 | 6, 7 | mulgcl 13269 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) | 
| 22 | 21 | adantr 276 | 
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑦 · 𝑋) ∈ 𝐵) | 
| 23 | 6, 15, 11 | grpinvadd 13210 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵) → ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg‘𝐺)‘(𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋))) | 
| 24 | 2, 4, 22, 23 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg‘𝐺)‘(𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋))) | 
| 25 | 19 | oveq2d 5938 | 
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋)) = (((invg‘𝐺)‘𝑋) +
((invg‘𝐺)‘(𝑦 · 𝑋)))) | 
| 26 | 6, 15, 11 | grpinvadd 13210 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg‘𝐺)‘𝑋) +
((invg‘𝐺)‘(𝑦 · 𝑋)))) | 
| 27 | 2, 22, 4, 26 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg‘𝐺)‘𝑋) +
((invg‘𝐺)‘(𝑦 · 𝑋)))) | 
| 28 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋)))) | 
| 29 | 28 | adantl 277 | 
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋)))) | 
| 30 | 25, 27, 29 | 3eqtr2rd 2236 | 
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg‘𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) | 
| 31 | 20, 24, 30 | 3eqtr2d 2235 | 
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋)) = (((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) | 
| 32 | 31 | oveq2d 5938 | 
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((-𝑦 · 𝑋) +
((invg‘𝐺)‘𝑋))) = (𝑋 +
(((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋)))) | 
| 33 | 6, 15, 11 | grpasscan1 13195 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 +
(((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋)) | 
| 34 | 2, 4, 10, 33 | syl3anc 1249 | 
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 +
(((invg‘𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋)) | 
| 35 | 17, 32, 34 | 3eqtrd 2233 | 
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) = (-𝑦 · 𝑋)) | 
| 36 | 35 | oveq1d 5937 | 
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋)) | 
| 37 | 6, 15 | grpcl 13140 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵) | 
| 38 | 1, 3, 9, 37 | syl3anc 1249 | 
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵) | 
| 39 | 38 | adantr 276 | 
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵) | 
| 40 | 6, 15, 11 | grpasscan2 13196 | 
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) | 
| 41 | 2, 39, 4, 40 | syl3anc 1249 | 
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) +
((invg‘𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) | 
| 42 | 36, 41 | eqtr3d 2231 | 
1
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) |