ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgaddcomlem GIF version

Theorem mulgaddcomlem 13275
Description: Lemma for mulgaddcom 13276. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcomlem (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))

Proof of Theorem mulgaddcomlem
StepHypRef Expression
1 simp1 999 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
21adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝐺 ∈ Grp)
3 simp3 1001 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝑋𝐵)
43adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝑋𝐵)
5 znegcl 9357 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 mulgaddcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 mulgaddcom.t . . . . . . . 8 · = (.g𝐺)
86, 7mulgcl 13269 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
95, 8syl3an2 1283 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
109adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) ∈ 𝐵)
11 eqid 2196 . . . . . . . 8 (invg𝐺) = (invg𝐺)
126, 11grpinvcl 13180 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
13123adant2 1018 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
1413adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘𝑋) ∈ 𝐵)
15 mulgaddcom.p . . . . . 6 + = (+g𝐺)
166, 15grpass 13141 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵)) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
172, 4, 10, 14, 16syl13anc 1251 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
186, 7, 11mulgneg 13270 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
1918adantr 276 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
2019oveq1d 5937 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
216, 7mulgcl 13269 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
2221adantr 276 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑦 · 𝑋) ∈ 𝐵)
236, 15, 11grpinvadd 13210 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
242, 4, 22, 23syl3anc 1249 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
2519oveq2d 5938 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
266, 15, 11grpinvadd 13210 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
272, 22, 4, 26syl3anc 1249 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
28 fveq2 5558 . . . . . . . 8 (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
2928adantl 277 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
3025, 27, 293eqtr2rd 2236 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3120, 24, 303eqtr2d 2235 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3231oveq2d 5938 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))) = (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))))
336, 15, 11grpasscan1 13195 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
342, 4, 10, 33syl3anc 1249 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
3517, 32, 343eqtrd 2233 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (-𝑦 · 𝑋))
3635oveq1d 5937 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
376, 15grpcl 13140 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
381, 3, 9, 37syl3anc 1249 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
3938adantr 276 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
406, 15, 11grpasscan2 13196 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵𝑋𝐵) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
412, 39, 4, 40syl3anc 1249 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
4236, 41eqtr3d 2231 1 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  -cneg 8198  cz 9326  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  invgcminusg 13133  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulgaddcom  13276
  Copyright terms: Public domain W3C validator