ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expdivap GIF version

Theorem expdivap 10069
Description: Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expdivap ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))

Proof of Theorem expdivap
StepHypRef Expression
1 divrecap 8218 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
213expb 1145 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
323adant3 964 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
43oveq1d 5683 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴 · (1 / 𝐵))↑𝑁))
5 recclap 8209 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℂ)
6 mulexp 10057 . . 3 ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)))
75, 6syl3an2 1209 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · (1 / 𝐵))↑𝑁) = ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)))
8 simp2l 970 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
9 simp2r 971 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → 𝐵 # 0)
10 nn0z 8833 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11103ad2ant3 967 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
12 exprecap 10059 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵𝑁)))
138, 9, 11, 12syl3anc 1175 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((1 / 𝐵)↑𝑁) = (1 / (𝐵𝑁)))
1413oveq2d 5684 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴𝑁) · (1 / (𝐵𝑁))))
15 expcl 10036 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
16153adant2 963 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
17 expcl 10036 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℂ)
1817adantlr 462 . . . . 5 (((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℂ)
19183adant1 962 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℂ)
20 expap0i 10050 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 # 0 ∧ 𝑁 ∈ ℤ) → (𝐵𝑁) # 0)
218, 9, 11, 20syl3anc 1175 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) # 0)
2216, 19, 21divrecapd 8323 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) / (𝐵𝑁)) = ((𝐴𝑁) · (1 / (𝐵𝑁))))
2314, 22eqtr4d 2124 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) · ((1 / 𝐵)↑𝑁)) = ((𝐴𝑁) / (𝐵𝑁)))
244, 7, 233eqtrd 2125 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 925   = wceq 1290  wcel 1439   class class class wbr 3853  (class class class)co 5668  cc 7411  0cc0 7413  1c1 7414   · cmul 7418   # cap 8121   / cdiv 8202  0cn0 8736  cz 8813  cexp 10017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525  ax-pre-mulext 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-if 3400  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-ilim 4207  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-frec 6172  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122  df-div 8203  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083  df-iseq 9916  df-seq3 9917  df-exp 10018
This theorem is referenced by:  expdivapd  10163
  Copyright terms: Public domain W3C validator