ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2uz GIF version

Theorem peano2uz 9717
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)
Assertion
Ref Expression
peano2uz (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))

Proof of Theorem peano2uz
StepHypRef Expression
1 simp1 1000 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ∈ ℤ)
2 peano2z 9421 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
323ad2ant2 1022 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 + 1) ∈ ℤ)
4 zre 9389 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 9389 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 letrp1 8934 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀 ≤ (𝑁 + 1))
75, 6syl3an2 1284 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ≤ (𝑁 + 1))
84, 7syl3an1 1283 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ≤ (𝑁 + 1))
91, 3, 83jca 1180 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1)))
10 eluz2 9667 . 2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
11 eluz2 9667 . 2 ((𝑁 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1)))
129, 10, 113imtr4i 201 1 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2177   class class class wbr 4048  cfv 5277  (class class class)co 5954  cr 7937  1c1 7939   + caddc 7941  cle 8121  cz 9385  cuz 9661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662
This theorem is referenced by:  peano2uzs  9718  peano2uzr  9719  uzaddcl  9720  fzsplit  10186  fzssp1  10202  fzsuc  10204  fzpred  10205  fzp1ss  10208  fzp1elp1  10210  fztp  10213  fzneuz  10236  fzosplitsnm1  10351  fzofzp1  10369  fzosplitsn  10375  fzostep1  10379  zsupcllemstep  10385  infssuzex  10389  frec2uzuzd  10560  frecuzrdgrrn  10566  frec2uzrdg  10567  frecuzrdgrcl  10568  frecuzrdgsuc  10572  frecuzrdgrclt  10573  frecuzrdgg  10574  frecuzrdgsuctlem  10581  frecfzen2  10585  fzfig  10588  uzsinds  10602  iseqovex  10616  seq3val  10618  seqvalcd  10619  seqf  10622  seq3p1  10623  seq3split  10646  seqsplitg  10647  seqf1oglem1  10677  seqf1oglem2  10678  seq3homo  10685  seq3z  10686  ser3ge0  10694  faclbnd3  10901  bcm1k  10918  seq3coll  11000  swrds1  11135  clim2ser  11698  clim2ser2  11699  serf0  11713  fsump1  11781  fsump1i  11794  fsumparts  11831  isum1p  11853  cvgratnnlemmn  11886  mertenslemi1  11896  clim2prod  11900  clim2divap  11901  fprodntrivap  11945  fprodp1  11961  fprodabs  11977  pcfac  12723  gsumsplit1r  13280  gsumprval  13281  gsumfzconst  13727  gsumfzfsumlemm  14399  dvply2g  15288
  Copyright terms: Public domain W3C validator