![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2uz | GIF version |
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
2 | peano2z 9356 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1021 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
4 | zre 9324 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 9324 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | letrp1 8869 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
7 | 5, 6 | syl3an2 1283 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
8 | 4, 7 | syl3an1 1282 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
9 | 1, 3, 8 | 3jca 1179 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
10 | eluz2 9601 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
11 | eluz2 9601 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
12 | 9, 10, 11 | 3imtr4i 201 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 1c1 7875 + caddc 7877 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 |
This theorem is referenced by: peano2uzs 9652 peano2uzr 9653 uzaddcl 9654 fzsplit 10120 fzssp1 10136 fzsuc 10138 fzpred 10139 fzp1ss 10142 fzp1elp1 10144 fztp 10147 fzneuz 10170 fzosplitsnm1 10279 fzofzp1 10297 fzosplitsn 10303 fzostep1 10307 frec2uzuzd 10476 frecuzrdgrrn 10482 frec2uzrdg 10483 frecuzrdgrcl 10484 frecuzrdgsuc 10488 frecuzrdgrclt 10489 frecuzrdgg 10490 frecuzrdgsuctlem 10497 frecfzen2 10501 fzfig 10504 uzsinds 10518 iseqovex 10532 seq3val 10534 seqvalcd 10535 seqf 10538 seq3p1 10539 seq3split 10562 seqsplitg 10563 seqf1oglem1 10593 seqf1oglem2 10594 seq3homo 10601 seq3z 10602 ser3ge0 10610 faclbnd3 10817 bcm1k 10834 seq3coll 10916 clim2ser 11483 clim2ser2 11484 serf0 11498 fsump1 11566 fsump1i 11579 fsumparts 11616 isum1p 11638 cvgratnnlemmn 11671 mertenslemi1 11681 clim2prod 11685 clim2divap 11686 fprodntrivap 11730 fprodp1 11746 fprodabs 11762 zsupcllemstep 12085 infssuzex 12089 pcfac 12491 gsumsplit1r 12984 gsumprval 12985 gsumfzconst 13414 gsumfzfsumlemm 14086 |
Copyright terms: Public domain | W3C validator |