ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2uz GIF version

Theorem peano2uz 9786
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)
Assertion
Ref Expression
peano2uz (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))

Proof of Theorem peano2uz
StepHypRef Expression
1 simp1 1021 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ∈ ℤ)
2 peano2z 9490 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
323ad2ant2 1043 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 + 1) ∈ ℤ)
4 zre 9458 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 9458 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 letrp1 9003 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀 ≤ (𝑁 + 1))
75, 6syl3an2 1305 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ≤ (𝑁 + 1))
84, 7syl3an1 1304 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ≤ (𝑁 + 1))
91, 3, 83jca 1201 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1)))
10 eluz2 9736 . 2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
11 eluz2 9736 . 2 ((𝑁 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1)))
129, 10, 113imtr4i 201 1 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  cr 8006  1c1 8008   + caddc 8010  cle 8190  cz 9454  cuz 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731
This theorem is referenced by:  peano2uzs  9787  peano2uzr  9788  uzaddcl  9789  fzsplit  10255  fzssp1  10271  fzsuc  10273  fzpred  10274  fzp1ss  10277  fzp1elp1  10279  fztp  10282  fzneuz  10305  fzosplitsnm1  10423  fzofzp1  10441  fzosplitsn  10447  fzostep1  10451  zsupcllemstep  10457  infssuzex  10461  frec2uzuzd  10632  frecuzrdgrrn  10638  frec2uzrdg  10639  frecuzrdgrcl  10640  frecuzrdgsuc  10644  frecuzrdgrclt  10645  frecuzrdgg  10646  frecuzrdgsuctlem  10653  frecfzen2  10657  fzfig  10660  uzsinds  10674  iseqovex  10688  seq3val  10690  seqvalcd  10691  seqf  10694  seq3p1  10695  seq3split  10718  seqsplitg  10719  seqf1oglem1  10749  seqf1oglem2  10750  seq3homo  10757  seq3z  10758  ser3ge0  10766  faclbnd3  10973  bcm1k  10990  seq3coll  11072  swrds1  11208  pfxccatpfx2  11277  clim2ser  11856  clim2ser2  11857  serf0  11871  fsump1  11939  fsump1i  11952  fsumparts  11989  isum1p  12011  cvgratnnlemmn  12044  mertenslemi1  12054  clim2prod  12058  clim2divap  12059  fprodntrivap  12103  fprodp1  12119  fprodabs  12135  pcfac  12881  gsumsplit1r  13439  gsumprval  13440  gsumfzconst  13886  gsumfzfsumlemm  14559  dvply2g  15448
  Copyright terms: Public domain W3C validator