ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsubdirap GIF version

Theorem divsubdirap 8823
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
Assertion
Ref Expression
divsubdirap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))

Proof of Theorem divsubdirap
StepHypRef Expression
1 negcl 8314 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 divdirap 8812 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶)))
31, 2syl3an2 1286 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶)))
4 negsub 8362 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54oveq1d 5989 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴𝐵) / 𝐶))
653adant3 1022 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴𝐵) / 𝐶))
73, 6eqtr3d 2244 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴𝐵) / 𝐶))
8 divnegap 8821 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶))
983expb 1209 . . . . 5 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶))
1093adant1 1020 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶))
1110oveq2d 5990 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶)))
12 divclap 8793 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) ∈ ℂ)
13123expb 1209 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) ∈ ℂ)
14133adant2 1021 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) ∈ ℂ)
15 divclap 8793 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐵 / 𝐶) ∈ ℂ)
16153expb 1209 . . . . 5 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 / 𝐶) ∈ ℂ)
17163adant1 1020 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 / 𝐶) ∈ ℂ)
1814, 17negsubd 8431 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
1911, 18eqtr3d 2244 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
207, 19eqtr3d 2244 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  (class class class)co 5974  cc 7965  0cc0 7967   + caddc 7970  cmin 8285  -cneg 8286   # cap 8696   / cdiv 8787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788
This theorem is referenced by:  divsubdirapd  8945  1mhlfehlf  9297  halfpm6th  9299  halfaddsub  9313  zeo  9520  mulsubdivbinom2ap  10900  cos2bnd  12237  sinq12gt0  15469  sincos6thpi  15481
  Copyright terms: Public domain W3C validator