Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divsubdirap | GIF version |
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.) |
Ref | Expression |
---|---|
divsubdirap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8119 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | divdirap 8614 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶))) | |
3 | 1, 2 | syl3an2 1267 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶))) |
4 | negsub 8167 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
5 | 4 | oveq1d 5868 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 − 𝐵) / 𝐶)) |
6 | 5 | 3adant3 1012 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 − 𝐵) / 𝐶)) |
7 | 3, 6 | eqtr3d 2205 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴 − 𝐵) / 𝐶)) |
8 | divnegap 8623 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶)) | |
9 | 8 | 3expb 1199 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶)) |
10 | 9 | 3adant1 1010 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶)) |
11 | 10 | oveq2d 5869 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶))) |
12 | divclap 8595 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) ∈ ℂ) | |
13 | 12 | 3expb 1199 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) ∈ ℂ) |
14 | 13 | 3adant2 1011 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) ∈ ℂ) |
15 | divclap 8595 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐵 / 𝐶) ∈ ℂ) | |
16 | 15 | 3expb 1199 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 / 𝐶) ∈ ℂ) |
17 | 16 | 3adant1 1010 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 / 𝐶) ∈ ℂ) |
18 | 14, 17 | negsubd 8236 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
19 | 11, 18 | eqtr3d 2205 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
20 | 7, 19 | eqtr3d 2205 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 − cmin 8090 -cneg 8091 # cap 8500 / cdiv 8589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 |
This theorem is referenced by: divsubdirapd 8747 1mhlfehlf 9096 halfpm6th 9098 halfaddsub 9112 zeo 9317 cos2bnd 11723 sinq12gt0 13545 sincos6thpi 13557 |
Copyright terms: Public domain | W3C validator |