ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcdeq GIF version

Theorem lcmgcdeq 12347
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcdeq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))

Proof of Theorem lcmgcdeq
StepHypRef Expression
1 dvdslcm 12333 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
21simpld 112 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 lcm 𝑁))
32adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀 ∥ (𝑀 lcm 𝑁))
4 gcddvds 12226 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
54simprd 114 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
6 breq1 4046 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁))
75, 6syl5ibrcom 157 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑁))
87imp 124 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑁)
9 lcmcl 12336 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
109nn0zd 9492 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
11 dvdstr 12081 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1210, 11syl3an2 1283 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
13123com12 1209 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
14133expb 1206 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1514anidms 397 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1615adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
173, 8, 16mp2and 433 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀𝑁)
18 absdvdsb 12062 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
19 zabscl 11339 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
20 dvdsabsb 12063 . . . . . . 7 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2119, 20sylan 283 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2218, 21bitrd 188 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2322adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2417, 23mpbid 147 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) ∥ (abs‘𝑁))
251simprd 114 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 lcm 𝑁))
2625adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁 ∥ (𝑀 lcm 𝑁))
274simpld 112 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
28 breq1 4046 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀))
2927, 28syl5ibrcom 157 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑀))
3029imp 124 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑀)
31 dvdstr 12081 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3210, 31syl3an2 1283 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
33323coml 1212 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
34333expb 1206 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3534anidms 397 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3635adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3726, 30, 36mp2and 433 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁𝑀)
38 absdvdsb 12062 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ 𝑀))
39 zabscl 11339 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
40 dvdsabsb 12063 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4139, 40sylan 283 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4238, 41bitrd 188 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4342ancoms 268 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4443adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4537, 44mpbid 147 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑁) ∥ (abs‘𝑀))
46 nn0abscl 11338 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
47 nn0abscl 11338 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
4846, 47anim12i 338 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0))
49 dvdseq 12101 . . . . . 6 ((((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5048, 49sylan 283 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5150ex 115 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5251adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5324, 45, 52mp2and 433 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) = (abs‘𝑁))
54 lcmid 12344 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5519, 54syl 14 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
56 gcdid 12249 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5719, 56syl 14 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5855, 57eqtr4d 2240 . . . . . 6 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)))
59 oveq2 5951 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) lcm (abs‘𝑁)))
60 oveq2 5951 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) gcd (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6159, 60eqeq12d 2219 . . . . . 6 ((abs‘𝑀) = (abs‘𝑁) → (((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)) ↔ ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6258, 61syl5ibcom 155 . . . . 5 (𝑀 ∈ ℤ → ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6362imp 124 . . . 4 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6463adantlr 477 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
65 lcmabs 12340 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
66 gcdabs 12251 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
6765, 66eqeq12d 2219 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6867adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6964, 68mpbid 147 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁))
7053, 69impbida 596 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5270  (class class class)co 5943  0cn0 9294  cz 9371  abscabs 11250  cdvds 12040   gcd cgcd 12216   lcm clcm 12324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-gcd 12217  df-lcm 12325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator