ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoshftral GIF version

Theorem fzoshftral 10173
Description: Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 10043. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
fzoshftral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝐾,𝑘   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzoshftral
StepHypRef Expression
1 fzoval 10083 . . . 4 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
213ad2ant2 1009 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
32raleqdv 2667 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑))
4 peano2zm 9229 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5 fzshftral 10043 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
64, 5syl3an2 1262 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
7 zaddcl 9231 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
873adant1 1005 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
9 fzoval 10083 . . . . 5 ((𝑁 + 𝐾) ∈ ℤ → ((𝑀 + 𝐾)..^(𝑁 + 𝐾)) = ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1)))
108, 9syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)..^(𝑁 + 𝐾)) = ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1)))
11 zcn 9196 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1211adantr 274 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
13 zcn 9196 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1413adantl 275 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ)
15 1cnd 7915 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 1 ∈ ℂ)
1612, 14, 15addsubd 8230 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑁 + 𝐾) − 1) = ((𝑁 − 1) + 𝐾))
17163adant1 1005 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑁 + 𝐾) − 1) = ((𝑁 − 1) + 𝐾))
1817oveq2d 5858 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1)) = ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾)))
1910, 18eqtr2d 2199 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾)) = ((𝑀 + 𝐾)..^(𝑁 + 𝐾)))
2019raleqdv 2667 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘𝐾) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
213, 6, 203bitrd 213 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444  [wsbc 2951  (class class class)co 5842  cc 7751  1c1 7754   + caddc 7756  cmin 8069  cz 9191  ...cfz 9944  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator