ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoshftral GIF version

Theorem fzoshftral 9902
Description: Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 9775. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
fzoshftral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝐾,𝑘   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzoshftral
StepHypRef Expression
1 fzoval 9812 . . . 4 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
213ad2ant2 984 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
32raleqdv 2604 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑))
4 peano2zm 8990 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5 fzshftral 9775 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
64, 5syl3an2 1231 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...(𝑁 − 1))𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
7 zaddcl 8992 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
873adant1 980 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
9 fzoval 9812 . . . . 5 ((𝑁 + 𝐾) ∈ ℤ → ((𝑀 + 𝐾)..^(𝑁 + 𝐾)) = ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1)))
108, 9syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)..^(𝑁 + 𝐾)) = ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1)))
11 zcn 8957 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1211adantr 272 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
13 zcn 8957 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1413adantl 273 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ)
15 1cnd 7700 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 1 ∈ ℂ)
1612, 14, 15addsubd 8011 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑁 + 𝐾) − 1) = ((𝑁 − 1) + 𝐾))
17163adant1 980 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑁 + 𝐾) − 1) = ((𝑁 − 1) + 𝐾))
1817oveq2d 5742 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...((𝑁 + 𝐾) − 1)) = ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾)))
1910, 18eqtr2d 2146 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾)) = ((𝑀 + 𝐾)..^(𝑁 + 𝐾)))
2019raleqdv 2604 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...((𝑁 − 1) + 𝐾))[(𝑘𝐾) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
213, 6, 203bitrd 213 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 943   = wceq 1312  wcel 1461  wral 2388  [wsbc 2876  (class class class)co 5726  cc 7539  1c1 7542   + caddc 7544  cmin 7850  cz 8952  ...cfz 9677  ..^cfzo 9806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-fz 9678  df-fzo 9807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator