Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdivap GIF version

Theorem imdivap 10665
 Description: Imaginary part of a division. Related to immul2 10664. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
imdivap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵))

Proof of Theorem imdivap
StepHypRef Expression
1 ancom 264 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0)))
2 3anass 966 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0)))
31, 2bitr4i 186 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0))
4 rerecclap 8502 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℝ)
54anim1i 338 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ))
63, 5sylbir 134 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ))
7 immul2 10664 . . 3 (((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴)))
86, 7syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴)))
9 recn 7765 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
10 divrecap2 8461 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))
1110fveq2d 5425 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴)))
129, 11syl3an2 1250 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴)))
13 imcl 10638 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1413recnd 7806 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
15143ad2ant1 1002 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘𝐴) ∈ ℂ)
1693ad2ant2 1003 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
17 simp3 983 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐵 # 0)
1815, 16, 17divrecap2d 8566 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((ℑ‘𝐴) / 𝐵) = ((1 / 𝐵) · (ℑ‘𝐴)))
198, 12, 183eqtr4d 2182 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 962   = wceq 1331   ∈ wcel 1480   class class class wbr 3929  ‘cfv 5123  (class class class)co 5774  ℂcc 7630  ℝcr 7631  0cc0 7632  1c1 7633   · cmul 7637   # cap 8355   / cdiv 8444  ℑcim 10625 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-2 8791  df-cj 10626  df-re 10627  df-im 10628 This theorem is referenced by:  imdivapd  10759
 Copyright terms: Public domain W3C validator