![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imdivap | GIF version |
Description: Imaginary part of a division. Related to immul2 10375. (Contributed by Jim Kingdon, 14-Jun-2020.) |
Ref | Expression |
---|---|
imdivap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 263 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0))) | |
2 | 3anass 929 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0))) | |
3 | 1, 2 | bitr4i 186 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0)) |
4 | rerecclap 8258 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℝ) | |
5 | 4 | anim1i 334 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 # 0) ∧ 𝐴 ∈ ℂ) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
6 | 3, 5 | sylbir 134 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
7 | immul2 10375 | . . 3 ⊢ (((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴))) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴))) |
9 | recn 7536 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
10 | divrecap2 8217 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
11 | 10 | fveq2d 5322 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴))) |
12 | 9, 11 | syl3an2 1209 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴))) |
13 | imcl 10349 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
14 | 13 | recnd 7577 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
15 | 14 | 3ad2ant1 965 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘𝐴) ∈ ℂ) |
16 | 9 | 3ad2ant2 966 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) |
17 | simp3 946 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐵 # 0) | |
18 | 15, 16, 17 | divrecap2d 8322 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((ℑ‘𝐴) / 𝐵) = ((1 / 𝐵) · (ℑ‘𝐴))) |
19 | 8, 12, 18 | 3eqtr4d 2131 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 925 = wceq 1290 ∈ wcel 1439 class class class wbr 3851 ‘cfv 5028 (class class class)co 5666 ℂcc 7409 ℝcr 7410 0cc0 7411 1c1 7412 · cmul 7416 # cap 8119 / cdiv 8200 ℑcim 10336 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-mulrcl 7505 ax-addcom 7506 ax-mulcom 7507 ax-addass 7508 ax-mulass 7509 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-1rid 7513 ax-0id 7514 ax-rnegex 7515 ax-precex 7516 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 ax-pre-mulgt0 7523 ax-pre-mulext 7524 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-po 4132 df-iso 4133 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-reap 8113 df-ap 8120 df-div 8201 df-2 8542 df-cj 10337 df-re 10338 df-im 10339 |
This theorem is referenced by: imdivapd 10470 |
Copyright terms: Public domain | W3C validator |