ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmrnssfld GIF version

Theorem dmrnssfld 4802
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
dmrnssfld (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴

Proof of Theorem dmrnssfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2689 . . . . 5 𝑥 ∈ V
21eldm2 4737 . . . 4 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
31prid1 3629 . . . . . 6 𝑥 ∈ {𝑥, 𝑦}
4 vex 2689 . . . . . . . . . 10 𝑦 ∈ V
51, 4uniop 4177 . . . . . . . . 9 𝑥, 𝑦⟩ = {𝑥, 𝑦}
61, 4uniopel 4178 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥, 𝑦⟩ ∈ 𝐴)
75, 6eqeltrrid 2227 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ∈ 𝐴)
8 elssuni 3764 . . . . . . . 8 ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
97, 8syl 14 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
109sseld 3096 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 𝐴))
113, 10mpi 15 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
1211exlimiv 1577 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
132, 12sylbi 120 . . 3 (𝑥 ∈ dom 𝐴𝑥 𝐴)
1413ssriv 3101 . 2 dom 𝐴 𝐴
154elrn2 4781 . . . 4 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
164prid2 3630 . . . . . 6 𝑦 ∈ {𝑥, 𝑦}
179sseld 3096 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 𝐴))
1816, 17mpi 15 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
1918exlimiv 1577 . . . 4 (∃𝑥𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
2015, 19sylbi 120 . . 3 (𝑦 ∈ ran 𝐴𝑦 𝐴)
2120ssriv 3101 . 2 ran 𝐴 𝐴
2214, 21unssi 3251 1 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wex 1468  wcel 1480  cun 3069  wss 3071  {cpr 3528  cop 3530   cuni 3736  dom cdm 4539  ran crn 4540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-cnv 4547  df-dm 4549  df-rn 4550
This theorem is referenced by:  dmexg  4803  rnexg  4804  relfld  5067  relcoi2  5069
  Copyright terms: Public domain W3C validator