![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmrnssfld | GIF version |
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2752 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 4837 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
3 | 1 | prid1 3710 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
4 | vex 2752 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
5 | 1, 4 | uniop 4267 | . . . . . . . . 9 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
6 | 1, 4 | uniopel 4268 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴) |
7 | 5, 6 | eqeltrrid 2275 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
8 | elssuni 3849 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
10 | 9 | sseld 3166 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
11 | 3, 10 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
12 | 11 | exlimiv 1608 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
13 | 2, 12 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
14 | 13 | ssriv 3171 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
15 | 4 | elrn2 4881 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
16 | 4 | prid2 3711 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
17 | 9 | sseld 3166 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
18 | 16, 17 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
19 | 18 | exlimiv 1608 | . . . 4 ⊢ (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
20 | 15, 19 | sylbi 121 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
21 | 20 | ssriv 3171 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
22 | 14, 21 | unssi 3322 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∃wex 1502 ∈ wcel 2158 ∪ cun 3139 ⊆ wss 3141 {cpr 3605 〈cop 3607 ∪ cuni 3821 dom cdm 4638 ran crn 4639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-cnv 4646 df-dm 4648 df-rn 4649 |
This theorem is referenced by: dmexg 4903 rnexg 4904 relfld 5169 relcoi2 5171 |
Copyright terms: Public domain | W3C validator |