ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmrnssfld GIF version

Theorem dmrnssfld 4874
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
dmrnssfld (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴

Proof of Theorem dmrnssfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑥 ∈ V
21eldm2 4809 . . . 4 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
31prid1 3689 . . . . . 6 𝑥 ∈ {𝑥, 𝑦}
4 vex 2733 . . . . . . . . . 10 𝑦 ∈ V
51, 4uniop 4240 . . . . . . . . 9 𝑥, 𝑦⟩ = {𝑥, 𝑦}
61, 4uniopel 4241 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥, 𝑦⟩ ∈ 𝐴)
75, 6eqeltrrid 2258 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ∈ 𝐴)
8 elssuni 3824 . . . . . . . 8 ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
97, 8syl 14 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
109sseld 3146 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 𝐴))
113, 10mpi 15 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
1211exlimiv 1591 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
132, 12sylbi 120 . . 3 (𝑥 ∈ dom 𝐴𝑥 𝐴)
1413ssriv 3151 . 2 dom 𝐴 𝐴
154elrn2 4853 . . . 4 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
164prid2 3690 . . . . . 6 𝑦 ∈ {𝑥, 𝑦}
179sseld 3146 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 𝐴))
1816, 17mpi 15 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
1918exlimiv 1591 . . . 4 (∃𝑥𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
2015, 19sylbi 120 . . 3 (𝑦 ∈ ran 𝐴𝑦 𝐴)
2120ssriv 3151 . 2 ran 𝐴 𝐴
2214, 21unssi 3302 1 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wex 1485  wcel 2141  cun 3119  wss 3121  {cpr 3584  cop 3586   cuni 3796  dom cdm 4611  ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  dmexg  4875  rnexg  4876  relfld  5139  relcoi2  5141
  Copyright terms: Public domain W3C validator