| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmrnssfld | GIF version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4882 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 3 | 1 | prid1 3741 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
| 4 | vex 2776 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 5 | 1, 4 | uniop 4305 | . . . . . . . . 9 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
| 6 | 1, 4 | uniopel 4306 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴) |
| 7 | 5, 6 | eqeltrrid 2294 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
| 8 | elssuni 3881 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
| 9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
| 10 | 9 | sseld 3194 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
| 11 | 3, 10 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 12 | 11 | exlimiv 1622 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 13 | 2, 12 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 14 | 13 | ssriv 3199 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 15 | 4 | elrn2 4926 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 16 | 4 | prid2 3742 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
| 17 | 9 | sseld 3194 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
| 18 | 16, 17 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 19 | 18 | exlimiv 1622 | . . . 4 ⊢ (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 20 | 15, 19 | sylbi 121 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 21 | 20 | ssriv 3199 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 22 | 14, 21 | unssi 3350 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1516 ∈ wcel 2177 ∪ cun 3166 ⊆ wss 3168 {cpr 3636 〈cop 3638 ∪ cuni 3853 dom cdm 4680 ran crn 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-cnv 4688 df-dm 4690 df-rn 4691 |
| This theorem is referenced by: dmexg 4948 rnexg 4949 relfld 5217 relcoi2 5219 |
| Copyright terms: Public domain | W3C validator |