| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmrnssfld | GIF version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) | 
| Ref | Expression | 
|---|---|
| dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4864 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) | 
| 3 | 1 | prid1 3728 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} | 
| 4 | vex 2766 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 5 | 1, 4 | uniop 4288 | . . . . . . . . 9 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} | 
| 6 | 1, 4 | uniopel 4289 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴) | 
| 7 | 5, 6 | eqeltrrid 2284 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) | 
| 8 | elssuni 3867 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
| 9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | 
| 10 | 9 | sseld 3182 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) | 
| 11 | 3, 10 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) | 
| 12 | 11 | exlimiv 1612 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) | 
| 13 | 2, 12 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) | 
| 14 | 13 | ssriv 3187 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 | 
| 15 | 4 | elrn2 4908 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | 
| 16 | 4 | prid2 3729 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} | 
| 17 | 9 | sseld 3182 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) | 
| 18 | 16, 17 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) | 
| 19 | 18 | exlimiv 1612 | . . . 4 ⊢ (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) | 
| 20 | 15, 19 | sylbi 121 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) | 
| 21 | 20 | ssriv 3187 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 | 
| 22 | 14, 21 | unssi 3338 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∃wex 1506 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 {cpr 3623 〈cop 3625 ∪ cuni 3839 dom cdm 4663 ran crn 4664 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 | 
| This theorem is referenced by: dmexg 4930 rnexg 4931 relfld 5198 relcoi2 5200 | 
| Copyright terms: Public domain | W3C validator |