![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmrnssfld | GIF version |
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 4827 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
3 | 1 | prid1 3700 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
4 | vex 2742 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
5 | 1, 4 | uniop 4257 | . . . . . . . . 9 ⊢ ∪ ⟨𝑥, 𝑦⟩ = {𝑥, 𝑦} |
6 | 1, 4 | uniopel 4258 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴) |
7 | 5, 6 | eqeltrrid 2265 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
8 | elssuni 3839 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
10 | 9 | sseld 3156 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
11 | 3, 10 | mpi 15 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
12 | 11 | exlimiv 1598 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
13 | 2, 12 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
14 | 13 | ssriv 3161 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
15 | 4 | elrn2 4871 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
16 | 4 | prid2 3701 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
17 | 9 | sseld 3156 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
18 | 16, 17 | mpi 15 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
19 | 18 | exlimiv 1598 | . . . 4 ⊢ (∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
20 | 15, 19 | sylbi 121 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
21 | 20 | ssriv 3161 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
22 | 14, 21 | unssi 3312 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∃wex 1492 ∈ wcel 2148 ∪ cun 3129 ⊆ wss 3131 {cpr 3595 ⟨cop 3597 ∪ cuni 3811 dom cdm 4628 ran crn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: dmexg 4893 rnexg 4894 relfld 5159 relcoi2 5161 |
Copyright terms: Public domain | W3C validator |