| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmrnssfld | GIF version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4918 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 3 | 1 | prid1 3772 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
| 4 | vex 2802 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 5 | 1, 4 | uniop 4341 | . . . . . . . . 9 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
| 6 | 1, 4 | uniopel 4342 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴) |
| 7 | 5, 6 | eqeltrrid 2317 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
| 8 | elssuni 3915 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
| 9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
| 10 | 9 | sseld 3223 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
| 11 | 3, 10 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 12 | 11 | exlimiv 1644 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 13 | 2, 12 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 14 | 13 | ssriv 3228 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 15 | 4 | elrn2 4962 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 16 | 4 | prid2 3773 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
| 17 | 9 | sseld 3223 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
| 18 | 16, 17 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 19 | 18 | exlimiv 1644 | . . . 4 ⊢ (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 20 | 15, 19 | sylbi 121 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 21 | 20 | ssriv 3228 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 22 | 14, 21 | unssi 3379 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1538 ∈ wcel 2200 ∪ cun 3195 ⊆ wss 3197 {cpr 3667 〈cop 3669 ∪ cuni 3887 dom cdm 4716 ran crn 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4724 df-dm 4726 df-rn 4727 |
| This theorem is referenced by: dmexg 4984 rnexg 4985 relfld 5253 relcoi2 5255 |
| Copyright terms: Public domain | W3C validator |