ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmrnssfld GIF version

Theorem dmrnssfld 4902
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
dmrnssfld (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴

Proof of Theorem dmrnssfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2752 . . . . 5 𝑥 ∈ V
21eldm2 4837 . . . 4 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
31prid1 3710 . . . . . 6 𝑥 ∈ {𝑥, 𝑦}
4 vex 2752 . . . . . . . . . 10 𝑦 ∈ V
51, 4uniop 4267 . . . . . . . . 9 𝑥, 𝑦⟩ = {𝑥, 𝑦}
61, 4uniopel 4268 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥, 𝑦⟩ ∈ 𝐴)
75, 6eqeltrrid 2275 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ∈ 𝐴)
8 elssuni 3849 . . . . . . . 8 ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
97, 8syl 14 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
109sseld 3166 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 𝐴))
113, 10mpi 15 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
1211exlimiv 1608 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
132, 12sylbi 121 . . 3 (𝑥 ∈ dom 𝐴𝑥 𝐴)
1413ssriv 3171 . 2 dom 𝐴 𝐴
154elrn2 4881 . . . 4 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
164prid2 3711 . . . . . 6 𝑦 ∈ {𝑥, 𝑦}
179sseld 3166 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 𝐴))
1816, 17mpi 15 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
1918exlimiv 1608 . . . 4 (∃𝑥𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
2015, 19sylbi 121 . . 3 (𝑦 ∈ ran 𝐴𝑦 𝐴)
2120ssriv 3171 . 2 ran 𝐴 𝐴
2214, 21unssi 3322 1 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wex 1502  wcel 2158  cun 3139  wss 3141  {cpr 3605  cop 3607   cuni 3821  dom cdm 4638  ran crn 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-cnv 4646  df-dm 4648  df-rn 4649
This theorem is referenced by:  dmexg  4903  rnexg  4904  relfld  5169  relcoi2  5171
  Copyright terms: Public domain W3C validator