![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmrnssfld | GIF version |
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 4854 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
3 | 1 | prid1 3724 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
4 | vex 2763 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
5 | 1, 4 | uniop 4284 | . . . . . . . . 9 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
6 | 1, 4 | uniopel 4285 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴) |
7 | 5, 6 | eqeltrrid 2281 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
8 | elssuni 3863 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
10 | 9 | sseld 3178 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
11 | 3, 10 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
12 | 11 | exlimiv 1609 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
13 | 2, 12 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
14 | 13 | ssriv 3183 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
15 | 4 | elrn2 4898 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
16 | 4 | prid2 3725 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
17 | 9 | sseld 3178 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
18 | 16, 17 | mpi 15 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
19 | 18 | exlimiv 1609 | . . . 4 ⊢ (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
20 | 15, 19 | sylbi 121 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
21 | 20 | ssriv 3183 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
22 | 14, 21 | unssi 3334 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∃wex 1503 ∈ wcel 2164 ∪ cun 3151 ⊆ wss 3153 {cpr 3619 〈cop 3621 ∪ cuni 3835 dom cdm 4655 ran crn 4656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-cnv 4663 df-dm 4665 df-rn 4666 |
This theorem is referenced by: dmexg 4920 rnexg 4921 relfld 5186 relcoi2 5188 |
Copyright terms: Public domain | W3C validator |