| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1bg | GIF version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| en1bg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 6867 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
| 2 | id 19 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
| 3 | unieq 3849 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | vex 2766 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4 | unisn 3856 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 |
| 6 | 3, 5 | eqtrdi 2245 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
| 7 | 6 | sneqd 3636 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
| 8 | 2, 7 | eqtr4d 2232 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 9 | 8 | exlimiv 1612 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 10 | 1, 9 | sylbi 121 | . 2 ⊢ (𝐴 ≈ 1o → 𝐴 = {∪ 𝐴}) |
| 11 | uniexg 4475 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 12 | ensn1g 6865 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1o) | |
| 13 | 11, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {∪ 𝐴} ≈ 1o) |
| 14 | breq1 4037 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → (𝐴 ≈ 1o ↔ {∪ 𝐴} ≈ 1o)) | |
| 15 | 13, 14 | syl5ibrcom 157 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1o)) |
| 16 | 10, 15 | impbid2 143 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 {csn 3623 ∪ cuni 3840 class class class wbr 4034 1oc1o 6476 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1o 6483 df-en 6809 |
| This theorem is referenced by: en1uniel 6872 |
| Copyright terms: Public domain | W3C validator |