ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1bg GIF version

Theorem en1bg 6952
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
en1bg (𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))

Proof of Theorem en1bg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 6951 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 19 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 3897 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 2802 . . . . . . . 8 𝑥 ∈ V
54unisn 3904 . . . . . . 7 {𝑥} = 𝑥
63, 5eqtrdi 2278 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 3679 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2265 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1644 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 121 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 uniexg 4530 . . . 4 (𝐴𝑉 𝐴 ∈ V)
12 ensn1g 6949 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 14 . . 3 (𝐴𝑉 → { 𝐴} ≈ 1o)
14 breq1 4086 . . 3 (𝐴 = { 𝐴} → (𝐴 ≈ 1o ↔ { 𝐴} ≈ 1o))
1513, 14syl5ibrcom 157 . 2 (𝐴𝑉 → (𝐴 = { 𝐴} → 𝐴 ≈ 1o))
1610, 15impbid2 143 1 (𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  {csn 3666   cuni 3888   class class class wbr 4083  1oc1o 6555  cen 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6562  df-en 6888
This theorem is referenced by:  en1uniel  6956
  Copyright terms: Public domain W3C validator