| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1bg | GIF version | ||
| Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| en1bg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 6891 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
| 2 | id 19 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
| 3 | unieq 3859 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | vex 2775 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4 | unisn 3866 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 |
| 6 | 3, 5 | eqtrdi 2254 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
| 7 | 6 | sneqd 3646 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
| 8 | 2, 7 | eqtr4d 2241 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 9 | 8 | exlimiv 1621 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
| 10 | 1, 9 | sylbi 121 | . 2 ⊢ (𝐴 ≈ 1o → 𝐴 = {∪ 𝐴}) |
| 11 | uniexg 4486 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 12 | ensn1g 6889 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1o) | |
| 13 | 11, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {∪ 𝐴} ≈ 1o) |
| 14 | breq1 4047 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → (𝐴 ≈ 1o ↔ {∪ 𝐴} ≈ 1o)) | |
| 15 | 13, 14 | syl5ibrcom 157 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1o)) |
| 16 | 10, 15 | impbid2 143 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 {csn 3633 ∪ cuni 3850 class class class wbr 4044 1oc1o 6495 ≈ cen 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1o 6502 df-en 6828 |
| This theorem is referenced by: en1uniel 6896 |
| Copyright terms: Public domain | W3C validator |