ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1bg GIF version

Theorem en1bg 6856
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
en1bg (𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))

Proof of Theorem en1bg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 6855 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 19 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 3845 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 2763 . . . . . . . 8 𝑥 ∈ V
54unisn 3852 . . . . . . 7 {𝑥} = 𝑥
63, 5eqtrdi 2242 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 3632 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2229 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1609 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 121 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 uniexg 4471 . . . 4 (𝐴𝑉 𝐴 ∈ V)
12 ensn1g 6853 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1311, 12syl 14 . . 3 (𝐴𝑉 → { 𝐴} ≈ 1o)
14 breq1 4033 . . 3 (𝐴 = { 𝐴} → (𝐴 ≈ 1o ↔ { 𝐴} ≈ 1o))
1513, 14syl5ibrcom 157 . 2 (𝐴𝑉 → (𝐴 = { 𝐴} → 𝐴 ≈ 1o))
1610, 15impbid2 143 1 (𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  {csn 3619   cuni 3836   class class class wbr 4030  1oc1o 6464  cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6471  df-en 6797
This theorem is referenced by:  en1uniel  6860
  Copyright terms: Public domain W3C validator