ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nda GIF version

Theorem op2nda 5105
Description: Extract the second member of an ordered pair. (See op1sta 5102 to extract the first member and op2ndb 5104 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2nda ran {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2nda
StepHypRef Expression
1 cnvsn.1 . . . 4 𝐴 ∈ V
21rnsnop 5101 . . 3 ran {⟨𝐴, 𝐵⟩} = {𝐵}
32unieqi 3815 . 2 ran {⟨𝐴, 𝐵⟩} = {𝐵}
4 cnvsn.2 . . 3 𝐵 ∈ V
54unisn 3821 . 2 {𝐵} = 𝐵
63, 5eqtri 2196 1 ran {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  Vcvv 2735  {csn 3589  cop 3592   cuni 3805  ran crn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by:  elxp4  5108  elxp5  5109  op2nd  6138  fo2nd  6149  f2ndres  6151  ixpsnf1o  6726  xpassen  6820  xpdom2  6821
  Copyright terms: Public domain W3C validator