| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2nda | GIF version | ||
| Description: Extract the second member of an ordered pair. (See op1sta 5161 to extract the first member and op2ndb 5163 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | rnsnop 5160 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
| 3 | 2 | unieqi 3859 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
| 4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 4 | unisn 3865 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
| 6 | 3, 5 | eqtri 2225 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 〈cop 3635 ∪ cuni 3849 ran crn 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 df-cnv 4681 df-dm 4683 df-rn 4684 |
| This theorem is referenced by: elxp4 5167 elxp5 5168 op2nd 6223 fo2nd 6234 f2ndres 6236 ixpsnf1o 6813 xpassen 6907 xpdom2 6908 |
| Copyright terms: Public domain | W3C validator |