Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nda GIF version

Theorem op2nda 5023
 Description: Extract the second member of an ordered pair. (See op1sta 5020 to extract the first member and op2ndb 5022 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2nda ran {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2nda
StepHypRef Expression
1 cnvsn.1 . . . 4 𝐴 ∈ V
21rnsnop 5019 . . 3 ran {⟨𝐴, 𝐵⟩} = {𝐵}
32unieqi 3746 . 2 ran {⟨𝐴, 𝐵⟩} = {𝐵}
4 cnvsn.2 . . 3 𝐵 ∈ V
54unisn 3752 . 2 {𝐵} = 𝐵
63, 5eqtri 2160 1 ran {⟨𝐴, 𝐵⟩} = 𝐵
 Colors of variables: wff set class Syntax hints:   = wceq 1331   ∈ wcel 1480  Vcvv 2686  {csn 3527  ⟨cop 3530  ∪ cuni 3736  ran crn 4540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550 This theorem is referenced by:  elxp4  5026  elxp5  5027  op2nd  6045  fo2nd  6056  f2ndres  6058  ixpsnf1o  6630  xpassen  6724  xpdom2  6725
 Copyright terms: Public domain W3C validator