![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op2nda | GIF version |
Description: Extract the second member of an ordered pair. (See op1sta 4925 to extract the first member and op2ndb 4927 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rnsnop 4924 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
3 | 2 | unieqi 3669 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 4 | unisn 3675 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
6 | 3, 5 | eqtri 2109 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∈ wcel 1439 Vcvv 2620 {csn 3450 〈cop 3453 ∪ cuni 3659 ran crn 4453 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4458 df-rel 4459 df-cnv 4460 df-dm 4462 df-rn 4463 |
This theorem is referenced by: elxp4 4931 elxp5 4932 op2nd 5932 fo2nd 5943 f2ndres 5945 ixpsnf1o 6507 xpassen 6600 xpdom2 6601 |
Copyright terms: Public domain | W3C validator |