![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op2nda | GIF version |
Description: Extract the second member of an ordered pair. (See op1sta 5148 to extract the first member and op2ndb 5150 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rnsnop 5147 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
3 | 2 | unieqi 3846 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 4 | unisn 3852 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
6 | 3, 5 | eqtri 2214 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3619 〈cop 3622 ∪ cuni 3836 ran crn 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: elxp4 5154 elxp5 5155 op2nd 6202 fo2nd 6213 f2ndres 6215 ixpsnf1o 6792 xpassen 6886 xpdom2 6887 |
Copyright terms: Public domain | W3C validator |