Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op2nda | GIF version |
Description: Extract the second member of an ordered pair. (See op1sta 5085 to extract the first member and op2ndb 5087 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2nda | ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rnsnop 5084 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} |
3 | 2 | unieqi 3799 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = ∪ {𝐵} |
4 | cnvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 4 | unisn 3805 | . 2 ⊢ ∪ {𝐵} = 𝐵 |
6 | 3, 5 | eqtri 2186 | 1 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 〈cop 3579 ∪ cuni 3789 ran crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: elxp4 5091 elxp5 5092 op2nd 6115 fo2nd 6126 f2ndres 6128 ixpsnf1o 6702 xpassen 6796 xpdom2 6797 |
Copyright terms: Public domain | W3C validator |