ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nda GIF version

Theorem op2nda 4928
Description: Extract the second member of an ordered pair. (See op1sta 4925 to extract the first member and op2ndb 4927 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2nda ran {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2nda
StepHypRef Expression
1 cnvsn.1 . . . 4 𝐴 ∈ V
21rnsnop 4924 . . 3 ran {⟨𝐴, 𝐵⟩} = {𝐵}
32unieqi 3669 . 2 ran {⟨𝐴, 𝐵⟩} = {𝐵}
4 cnvsn.2 . . 3 𝐵 ∈ V
54unisn 3675 . 2 {𝐵} = 𝐵
63, 5eqtri 2109 1 ran {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1290  wcel 1439  Vcvv 2620  {csn 3450  cop 3453   cuni 3659  ran crn 4453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-cnv 4460  df-dm 4462  df-rn 4463
This theorem is referenced by:  elxp4  4931  elxp5  4932  op2nd  5932  fo2nd  5943  f2ndres  5945  ixpsnf1o  6507  xpassen  6600  xpdom2  6601
  Copyright terms: Public domain W3C validator