ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nda GIF version

Theorem op2nda 5150
Description: Extract the second member of an ordered pair. (See op1sta 5147 to extract the first member and op2ndb 5149 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2nda ran {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2nda
StepHypRef Expression
1 cnvsn.1 . . . 4 𝐴 ∈ V
21rnsnop 5146 . . 3 ran {⟨𝐴, 𝐵⟩} = {𝐵}
32unieqi 3845 . 2 ran {⟨𝐴, 𝐵⟩} = {𝐵}
4 cnvsn.2 . . 3 𝐵 ∈ V
54unisn 3851 . 2 {𝐵} = 𝐵
63, 5eqtri 2214 1 ran {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  cop 3621   cuni 3835  ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  elxp4  5153  elxp5  5154  op2nd  6200  fo2nd  6211  f2ndres  6213  ixpsnf1o  6790  xpassen  6884  xpdom2  6885
  Copyright terms: Public domain W3C validator