Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opswapg | GIF version |
Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
opswapg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 5089 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
2 | 1 | unieqd 3800 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ {〈𝐵, 𝐴〉}) |
3 | elex 2737 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | elex 2737 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
5 | opexg 4206 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → 〈𝐵, 𝐴〉 ∈ V) | |
6 | 3, 4, 5 | syl2anr 288 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐵, 𝐴〉 ∈ V) |
7 | unisng 3806 | . . 3 ⊢ (〈𝐵, 𝐴〉 ∈ V → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) |
9 | 2, 8 | eqtrd 2198 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 〈cop 3579 ∪ cuni 3789 ◡ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: 2nd1st 6148 cnvf1olem 6192 brtposg 6222 dftpos4 6231 tpostpos 6232 xpcomco 6792 fsumcnv 11378 fprodcnv 11566 txswaphmeolem 12960 |
Copyright terms: Public domain | W3C validator |