![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opswapg | GIF version |
Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
opswapg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 5116 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) | |
2 | 1 | unieqd 3822 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{⟨𝐴, 𝐵⟩} = ∪ {⟨𝐵, 𝐴⟩}) |
3 | elex 2750 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | elex 2750 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
5 | opexg 4230 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ ∈ V) | |
6 | 3, 4, 5 | syl2anr 290 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⟨𝐵, 𝐴⟩ ∈ V) |
7 | unisng 3828 | . . 3 ⊢ (⟨𝐵, 𝐴⟩ ∈ V → ∪ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩) |
9 | 2, 8 | eqtrd 2210 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 ⟨cop 3597 ∪ cuni 3811 ◡ccnv 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 |
This theorem is referenced by: 2nd1st 6183 cnvf1olem 6227 brtposg 6257 dftpos4 6266 tpostpos 6267 xpcomco 6828 fsumcnv 11447 fprodcnv 11635 txswaphmeolem 13859 |
Copyright terms: Public domain | W3C validator |