| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opswapg | GIF version | ||
| Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.) |
| Ref | Expression |
|---|---|
| opswapg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsng 5214 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
| 2 | 1 | unieqd 3899 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ {〈𝐵, 𝐴〉}) |
| 3 | elex 2811 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 4 | elex 2811 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 5 | opexg 4314 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → 〈𝐵, 𝐴〉 ∈ V) | |
| 6 | 3, 4, 5 | syl2anr 290 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐵, 𝐴〉 ∈ V) |
| 7 | unisng 3905 | . . 3 ⊢ (〈𝐵, 𝐴〉 ∈ V → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) |
| 9 | 2, 8 | eqtrd 2262 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 〈cop 3669 ∪ cuni 3888 ◡ccnv 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 |
| This theorem is referenced by: 2nd1st 6326 cnvf1olem 6370 brtposg 6400 dftpos4 6409 tpostpos 6410 xpcomco 6985 fsumcnv 11948 fprodcnv 12136 txswaphmeolem 14994 |
| Copyright terms: Public domain | W3C validator |