ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opswapg GIF version

Theorem opswapg 5097
Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
opswapg ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)

Proof of Theorem opswapg
StepHypRef Expression
1 cnvsng 5096 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21unieqd 3807 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 elex 2741 . . . 4 (𝐵𝑊𝐵 ∈ V)
4 elex 2741 . . . 4 (𝐴𝑉𝐴 ∈ V)
5 opexg 4213 . . . 4 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ ∈ V)
63, 4, 5syl2anr 288 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐵, 𝐴⟩ ∈ V)
7 unisng 3813 . . 3 (⟨𝐵, 𝐴⟩ ∈ V → {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩)
86, 7syl 14 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩)
92, 8eqtrd 2203 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583  cop 3586   cuni 3796  ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by:  2nd1st  6159  cnvf1olem  6203  brtposg  6233  dftpos4  6242  tpostpos  6243  xpcomco  6804  fsumcnv  11400  fprodcnv  11588  txswaphmeolem  13114
  Copyright terms: Public domain W3C validator