Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opswapg | GIF version |
Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
opswapg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 5096 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
2 | 1 | unieqd 3807 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ {〈𝐵, 𝐴〉}) |
3 | elex 2741 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | elex 2741 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
5 | opexg 4213 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → 〈𝐵, 𝐴〉 ∈ V) | |
6 | 3, 4, 5 | syl2anr 288 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐵, 𝐴〉 ∈ V) |
7 | unisng 3813 | . . 3 ⊢ (〈𝐵, 𝐴〉 ∈ V → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) |
9 | 2, 8 | eqtrd 2203 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 〈cop 3586 ∪ cuni 3796 ◡ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 |
This theorem is referenced by: 2nd1st 6159 cnvf1olem 6203 brtposg 6233 dftpos4 6242 tpostpos 6243 xpcomco 6804 fsumcnv 11400 fprodcnv 11588 txswaphmeolem 13114 |
Copyright terms: Public domain | W3C validator |