| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opswapg | GIF version | ||
| Description: Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.) |
| Ref | Expression |
|---|---|
| opswapg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsng 5156 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
| 2 | 1 | unieqd 3851 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ {〈𝐵, 𝐴〉}) |
| 3 | elex 2774 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 4 | elex 2774 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 5 | opexg 4262 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → 〈𝐵, 𝐴〉 ∈ V) | |
| 6 | 3, 4, 5 | syl2anr 290 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐵, 𝐴〉 ∈ V) |
| 7 | unisng 3857 | . . 3 ⊢ (〈𝐵, 𝐴〉 ∈ V → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉) |
| 9 | 2, 8 | eqtrd 2229 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 〈cop 3626 ∪ cuni 3840 ◡ccnv 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 |
| This theorem is referenced by: 2nd1st 6247 cnvf1olem 6291 brtposg 6321 dftpos4 6330 tpostpos 6331 xpcomco 6894 fsumcnv 11619 fprodcnv 11807 txswaphmeolem 14640 |
| Copyright terms: Public domain | W3C validator |