ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss0v GIF version

Theorem lss0v 14267
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
lss0v.x 𝑋 = (𝑊s 𝑈)
lss0v.o 0 = (0g𝑊)
lss0v.z 𝑍 = (0g𝑋)
lss0v.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss0v ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑍 = 0 )

Proof of Theorem lss0v
StepHypRef Expression
1 0ss 3503 . . . . 5 ∅ ⊆ 𝑈
2 lss0v.x . . . . . 6 𝑋 = (𝑊s 𝑈)
3 eqid 2206 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
4 eqid 2206 . . . . . 6 (LSpan‘𝑋) = (LSpan‘𝑋)
5 lss0v.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
62, 3, 4, 5lsslsp 14266 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅))
71, 6mp3an3 1339 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅))
82, 5lsslmod 14217 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
9 lss0v.z . . . . . 6 𝑍 = (0g𝑋)
109, 4lsp0 14260 . . . . 5 (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍})
118, 10syl 14 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍})
12 lss0v.o . . . . . 6 0 = (0g𝑊)
1312, 3lsp0 14260 . . . . 5 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 })
1413adantr 276 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑊)‘∅) = { 0 })
157, 11, 143eqtr3d 2247 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → {𝑍} = { 0 })
1615unieqd 3867 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → {𝑍} = { 0 })
17 eqid 2206 . . . 4 (Base‘𝑋) = (Base‘𝑋)
1817, 9lmod0vcl 14154 . . 3 (𝑋 ∈ LMod → 𝑍 ∈ (Base‘𝑋))
19 unisng 3873 . . 3 (𝑍 ∈ (Base‘𝑋) → {𝑍} = 𝑍)
208, 18, 193syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → {𝑍} = 𝑍)
21 eqid 2206 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2221, 12lmod0vcl 14154 . . . 4 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
23 unisng 3873 . . . 4 ( 0 ∈ (Base‘𝑊) → { 0 } = 0 )
2422, 23syl 14 . . 3 (𝑊 ∈ LMod → { 0 } = 0 )
2524adantr 276 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → { 0 } = 0 )
2616, 20, 253eqtr3d 2247 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑍 = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wss 3170  c0 3464  {csn 3638   cuni 3856  cfv 5280  (class class class)co 5957  Basecbs 12907  s cress 12908  0gc0g 13163  LModclmod 14124  LSubSpclss 14189  LSpanclspn 14223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-sbg 13412  df-subg 13581  df-mgp 13758  df-ur 13797  df-ring 13835  df-lmod 14126  df-lssm 14190  df-lsp 14224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator