![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lss0v | GIF version |
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
Ref | Expression |
---|---|
lss0v.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lss0v.o | ⊢ 0 = (0g‘𝑊) |
lss0v.z | ⊢ 𝑍 = (0g‘𝑋) |
lss0v.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss0v | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3476 | . . . . 5 ⊢ ∅ ⊆ 𝑈 | |
2 | lss0v.x | . . . . . 6 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
3 | eqid 2189 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | eqid 2189 | . . . . . 6 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
5 | lss0v.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
6 | 2, 3, 4, 5 | lsslsp 13762 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
7 | 1, 6 | mp3an3 1337 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
8 | 2, 5 | lsslmod 13713 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
9 | lss0v.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑋) | |
10 | 9, 4 | lsp0 13756 | . . . . 5 ⊢ (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍}) |
11 | 8, 10 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍}) |
12 | lss0v.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
13 | 12, 3 | lsp0 13756 | . . . . 5 ⊢ (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 }) |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = { 0 }) |
15 | 7, 11, 14 | 3eqtr3d 2230 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → {𝑍} = { 0 }) |
16 | 15 | unieqd 3835 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = ∪ { 0 }) |
17 | eqid 2189 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
18 | 17, 9 | lmod0vcl 13650 | . . 3 ⊢ (𝑋 ∈ LMod → 𝑍 ∈ (Base‘𝑋)) |
19 | unisng 3841 | . . 3 ⊢ (𝑍 ∈ (Base‘𝑋) → ∪ {𝑍} = 𝑍) | |
20 | 8, 18, 19 | 3syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = 𝑍) |
21 | eqid 2189 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
22 | 21, 12 | lmod0vcl 13650 | . . . 4 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
23 | unisng 3841 | . . . 4 ⊢ ( 0 ∈ (Base‘𝑊) → ∪ { 0 } = 0 ) | |
24 | 22, 23 | syl 14 | . . 3 ⊢ (𝑊 ∈ LMod → ∪ { 0 } = 0 ) |
25 | 24 | adantr 276 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ { 0 } = 0 ) |
26 | 16, 20, 25 | 3eqtr3d 2230 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 ∅c0 3437 {csn 3607 ∪ cuni 3824 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 ↾s cress 12516 0gc0g 12764 LModclmod 13620 LSubSpclss 13685 LSpanclspn 13719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-plusg 12605 df-mulr 12606 df-sca 12608 df-vsca 12609 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-sbg 12965 df-subg 13126 df-mgp 13292 df-ur 13331 df-ring 13369 df-lmod 13622 df-lssm 13686 df-lsp 13720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |