| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lss0v | GIF version | ||
| Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
| Ref | Expression |
|---|---|
| lss0v.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lss0v.o | ⊢ 0 = (0g‘𝑊) |
| lss0v.z | ⊢ 𝑍 = (0g‘𝑋) |
| lss0v.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lss0v | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3490 | . . . . 5 ⊢ ∅ ⊆ 𝑈 | |
| 2 | lss0v.x | . . . . . 6 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 3 | eqid 2196 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | eqid 2196 | . . . . . 6 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
| 5 | lss0v.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 6 | 2, 3, 4, 5 | lsslsp 14061 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
| 7 | 1, 6 | mp3an3 1337 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
| 8 | 2, 5 | lsslmod 14012 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
| 9 | lss0v.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑋) | |
| 10 | 9, 4 | lsp0 14055 | . . . . 5 ⊢ (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍}) |
| 11 | 8, 10 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍}) |
| 12 | lss0v.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 13 | 12, 3 | lsp0 14055 | . . . . 5 ⊢ (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 }) |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = { 0 }) |
| 15 | 7, 11, 14 | 3eqtr3d 2237 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → {𝑍} = { 0 }) |
| 16 | 15 | unieqd 3851 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = ∪ { 0 }) |
| 17 | eqid 2196 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 18 | 17, 9 | lmod0vcl 13949 | . . 3 ⊢ (𝑋 ∈ LMod → 𝑍 ∈ (Base‘𝑋)) |
| 19 | unisng 3857 | . . 3 ⊢ (𝑍 ∈ (Base‘𝑋) → ∪ {𝑍} = 𝑍) | |
| 20 | 8, 18, 19 | 3syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = 𝑍) |
| 21 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 22 | 21, 12 | lmod0vcl 13949 | . . . 4 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
| 23 | unisng 3857 | . . . 4 ⊢ ( 0 ∈ (Base‘𝑊) → ∪ { 0 } = 0 ) | |
| 24 | 22, 23 | syl 14 | . . 3 ⊢ (𝑊 ∈ LMod → ∪ { 0 } = 0 ) |
| 25 | 24 | adantr 276 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ { 0 } = 0 ) |
| 26 | 16, 20, 25 | 3eqtr3d 2237 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3451 {csn 3623 ∪ cuni 3840 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 ↾s cress 12704 0gc0g 12958 LModclmod 13919 LSubSpclss 13984 LSpanclspn 14018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-subg 13376 df-mgp 13553 df-ur 13592 df-ring 13630 df-lmod 13921 df-lssm 13985 df-lsp 14019 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |