![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitg | GIF version |
Description: The topology generated by a basis π΅ is a topology on βͺ π΅. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
unitg | β’ (π΅ β π β βͺ (topGenβπ΅) = βͺ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tg1 13644 | . . . . . 6 β’ (π₯ β (topGenβπ΅) β π₯ β βͺ π΅) | |
2 | velpw 3584 | . . . . . 6 β’ (π₯ β π« βͺ π΅ β π₯ β βͺ π΅) | |
3 | 1, 2 | sylibr 134 | . . . . 5 β’ (π₯ β (topGenβπ΅) β π₯ β π« βͺ π΅) |
4 | 3 | ssriv 3161 | . . . 4 β’ (topGenβπ΅) β π« βͺ π΅ |
5 | sspwuni 3973 | . . . 4 β’ ((topGenβπ΅) β π« βͺ π΅ β βͺ (topGenβπ΅) β βͺ π΅) | |
6 | 4, 5 | mpbi 145 | . . 3 β’ βͺ (topGenβπ΅) β βͺ π΅ |
7 | 6 | a1i 9 | . 2 β’ (π΅ β π β βͺ (topGenβπ΅) β βͺ π΅) |
8 | bastg 13646 | . . 3 β’ (π΅ β π β π΅ β (topGenβπ΅)) | |
9 | 8 | unissd 3835 | . 2 β’ (π΅ β π β βͺ π΅ β βͺ (topGenβπ΅)) |
10 | 7, 9 | eqssd 3174 | 1 β’ (π΅ β π β βͺ (topGenβπ΅) = βͺ π΅) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 β wss 3131 π« cpw 3577 βͺ cuni 3811 βcfv 5218 topGenctg 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-topgen 12714 |
This theorem is referenced by: tgcl 13649 tgtopon 13651 txtopon 13847 uniretop 14110 |
Copyright terms: Public domain | W3C validator |