ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitg GIF version

Theorem unitg 14701
Description: The topology generated by a basis 𝐵 is a topology on 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg (𝐵𝑉 (topGen‘𝐵) = 𝐵)

Proof of Theorem unitg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tg1 14698 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
2 velpw 3636 . . . . . 6 (𝑥 ∈ 𝒫 𝐵𝑥 𝐵)
31, 2sylibr 134 . . . . 5 (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 𝐵)
43ssriv 3208 . . . 4 (topGen‘𝐵) ⊆ 𝒫 𝐵
5 sspwuni 4029 . . . 4 ((topGen‘𝐵) ⊆ 𝒫 𝐵 (topGen‘𝐵) ⊆ 𝐵)
64, 5mpbi 145 . . 3 (topGen‘𝐵) ⊆ 𝐵
76a1i 9 . 2 (𝐵𝑉 (topGen‘𝐵) ⊆ 𝐵)
8 bastg 14700 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
98unissd 3891 . 2 (𝐵𝑉 𝐵 (topGen‘𝐵))
107, 9eqssd 3221 1 (𝐵𝑉 (topGen‘𝐵) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  wss 3177  𝒫 cpw 3629   cuni 3867  cfv 5294  topGenctg 13253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-topgen 13259
This theorem is referenced by:  tgcl  14703  tgtopon  14705  txtopon  14901  uniretop  15164
  Copyright terms: Public domain W3C validator