![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpssmapg | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
ixpssmapg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4328 | . . . . . . 7 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ¬ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
2 | ixpprc 8915 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
3 | 1, 2 | nsyl2 141 | . . . . . 6 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) | |
5 | iunexg 7949 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 3, 4, 5 | syl2anr 596 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
7 | ixpssmap2g 8923 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
9 | simpr 484 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) | |
10 | 8, 9 | sseldd 3978 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
11 | 10 | ex 412 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴))) |
12 | 11 | ssrdv 3983 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 ∪ ciun 4990 (class class class)co 7405 ↑m cmap 8822 Xcixp 8893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8824 df-ixp 8894 |
This theorem is referenced by: ixpssmap 8928 gruixp 10806 hoissrrn 45837 hoissrrn2 45866 |
Copyright terms: Public domain | W3C validator |