MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapun Structured version   Visualization version   GIF version

Theorem vdwapun 16139
Description: Remove the first element of an arithmetic progression. (Contributed by Mario Carneiro, 11-Sep-2014.)
Assertion
Ref Expression
vdwapun ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))

Proof of Theorem vdwapun
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11785 . . . . 5 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
2 vdwapval 16138 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷))))
31, 2syl3an1 1156 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷))))
4 simp1 1129 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℕ0)
54nn0cnd 11805 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℂ)
6 ax-1cn 10441 . . . . . . . . . . . 12 1 ∈ ℂ
7 pncan 10739 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
85, 6, 7sylancl 586 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐾 + 1) − 1) = 𝐾)
98oveq2d 7032 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0...((𝐾 + 1) − 1)) = (0...𝐾))
109eleq2d 2868 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...((𝐾 + 1) − 1)) ↔ 𝑛 ∈ (0...𝐾)))
11 nn0uz 12129 . . . . . . . . . . 11 0 = (ℤ‘0)
124, 11syl6eleq 2893 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ (ℤ‘0))
13 elfzp12 12836 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘0) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1510, 14bitrd 280 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...((𝐾 + 1) − 1)) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1615anbi1d 629 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
17 andir 1003 . . . . . . 7 (((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
1816, 17syl6bb 288 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
1918exbidv 1899 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
20 df-rex 3111 . . . . 5 (∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))
21 19.43 1864 . . . . . 6 (∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
2221bicomi 225 . . . . 5 ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
2319, 20, 223bitr4g 315 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
243, 23bitrd 280 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
25 nncn 11494 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
26253ad2ant3 1128 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2726mul02d 10685 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 · 𝐷) = 0)
2827oveq2d 7032 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + (0 · 𝐷)) = (𝐴 + 0))
29 nncn 11494 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
30293ad2ant2 1127 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ℂ)
3130addid1d 10687 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 0) = 𝐴)
3228, 31eqtrd 2831 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + (0 · 𝐷)) = 𝐴)
3332eqeq2d 2805 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 = (𝐴 + (0 · 𝐷)) ↔ 𝑥 = 𝐴))
34 c0ex 10481 . . . . . . 7 0 ∈ V
35 oveq1 7023 . . . . . . . . 9 (𝑛 = 0 → (𝑛 · 𝐷) = (0 · 𝐷))
3635oveq2d 7032 . . . . . . . 8 (𝑛 = 0 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (0 · 𝐷)))
3736eqeq2d 2805 . . . . . . 7 (𝑛 = 0 → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ 𝑥 = (𝐴 + (0 · 𝐷))))
3834, 37ceqsexv 3484 . . . . . 6 (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 = (𝐴 + (0 · 𝐷)))
39 velsn 4488 . . . . . 6 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4033, 38, 393bitr4g 315 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ {𝐴}))
41 simpr 485 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ((0 + 1)...𝐾))
42 0p1e1 11607 . . . . . . . . . . . . . . 15 (0 + 1) = 1
4342oveq1i 7026 . . . . . . . . . . . . . 14 ((0 + 1)...𝐾) = (1...𝐾)
4441, 43syl6eleq 2893 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ (1...𝐾))
45 1zzd 11862 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 1 ∈ ℤ)
464adantr 481 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐾 ∈ ℕ0)
4746nn0zd 11934 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐾 ∈ ℤ)
48 elfzelz 12758 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((0 + 1)...𝐾) → 𝑛 ∈ ℤ)
4948adantl 482 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ℤ)
50 fzsubel 12793 . . . . . . . . . . . . . 14 (((1 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1))))
5145, 47, 49, 45, 50syl22anc 835 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1))))
5244, 51mpbid 233 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))
53 1m1e0 11557 . . . . . . . . . . . . 13 (1 − 1) = 0
5453oveq1i 7026 . . . . . . . . . . . 12 ((1 − 1)...(𝐾 − 1)) = (0...(𝐾 − 1))
5552, 54syl6eleq 2893 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ (0...(𝐾 − 1)))
5649zcnd 11937 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ℂ)
57 1cnd 10482 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 1 ∈ ℂ)
5826adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐷 ∈ ℂ)
5956, 57, 58subdird 10945 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − (1 · 𝐷)))
6058mulid2d 10505 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (1 · 𝐷) = 𝐷)
6160oveq2d 7032 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 · 𝐷) − (1 · 𝐷)) = ((𝑛 · 𝐷) − 𝐷))
6259, 61eqtrd 2831 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − 𝐷))
6362oveq2d 7032 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐷 + ((𝑛 − 1) · 𝐷)) = (𝐷 + ((𝑛 · 𝐷) − 𝐷)))
6456, 58mulcld 10507 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 · 𝐷) ∈ ℂ)
6558, 64pncan3d 10848 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐷 + ((𝑛 · 𝐷) − 𝐷)) = (𝑛 · 𝐷))
6663, 65eqtr2d 2832 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 · 𝐷) = (𝐷 + ((𝑛 − 1) · 𝐷)))
6766oveq2d 7032 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷))))
6830adantr 481 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐴 ∈ ℂ)
69 subcl 10732 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
7056, 6, 69sylancl 586 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ ℂ)
7170, 58mulcld 10507 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) ∈ ℂ)
7268, 58, 71addassd 10509 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷))))
7367, 72eqtr4d 2834 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)))
74 oveq1 7023 . . . . . . . . . . . . 13 (𝑚 = (𝑛 − 1) → (𝑚 · 𝐷) = ((𝑛 − 1) · 𝐷))
7574oveq2d 7032 . . . . . . . . . . . 12 (𝑚 = (𝑛 − 1) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)))
7675rspceeqv 3577 . . . . . . . . . . 11 (((𝑛 − 1) ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))
7755, 73, 76syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))
78 eqeq1 2799 . . . . . . . . . . 11 (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
7978rexbidv 3260 . . . . . . . . . 10 (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8077, 79syl5ibrcom 248 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8180expimpd 454 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8281exlimdv 1911 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
83 simpr 485 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ (0...(𝐾 − 1)))
84 0zd 11841 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 0 ∈ ℤ)
854adantr 481 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℕ0)
8685nn0zd 11934 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℤ)
87 peano2zm 11874 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
8886, 87syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
89 elfzelz 12758 . . . . . . . . . . . . . 14 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℤ)
9089adantl 482 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℤ)
91 1zzd 11862 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℤ)
92 fzaddel 12791 . . . . . . . . . . . . 13 (((0 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1))))
9384, 88, 90, 91, 92syl22anc 835 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1))))
9483, 93mpbid 233 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1)))
9585nn0cnd 11805 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℂ)
96 npcan 10743 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
9795, 6, 96sylancl 586 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐾 − 1) + 1) = 𝐾)
9897oveq2d 7032 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((0 + 1)...((𝐾 − 1) + 1)) = ((0 + 1)...𝐾))
9994, 98eleqtrd 2885 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...𝐾))
10030adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
10126adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
10290zcnd 11937 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
103102, 101mulcld 10507 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
104100, 101, 103addassd 10509 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷))))
105 1cnd 10482 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
106102, 105, 101adddird 10512 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = ((𝑚 · 𝐷) + (1 · 𝐷)))
107101, 103addcomd 10689 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷))
108101mulid2d 10505 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (1 · 𝐷) = 𝐷)
109108oveq2d 7032 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 · 𝐷) + (1 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷))
110107, 109eqtr4d 2834 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + (1 · 𝐷)))
111106, 110eqtr4d 2834 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = (𝐷 + (𝑚 · 𝐷)))
112111oveq2d 7032 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + ((𝑚 + 1) · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷))))
113104, 112eqtr4d 2834 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))
114 ovex 7048 . . . . . . . . . . 11 (𝑚 + 1) ∈ V
115 eleq1 2870 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → (𝑛 ∈ ((0 + 1)...𝐾) ↔ (𝑚 + 1) ∈ ((0 + 1)...𝐾)))
116 oveq1 7023 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑛 · 𝐷) = ((𝑚 + 1) · 𝐷))
117116oveq2d 7032 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))
118117eqeq2d 2805 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → (((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))))
119115, 118anbi12d 630 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))))
120114, 119spcev 3549 . . . . . . . . . 10 (((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
12199, 113, 120syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
122 eqeq1 2799 . . . . . . . . . . 11 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
123122anbi2d 628 . . . . . . . . . 10 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ (𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))))
124123exbidv 1899 . . . . . . . . 9 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))))
125121, 124syl5ibrcom 248 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
126125rexlimdva 3247 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
12782, 126impbid 213 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
128 nnaddcl 11508 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ)
1291283adant1 1123 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ)
130 vdwapval 16138 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
131129, 130syld3an2 1404 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
132127, 131bitr4d 283 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
13340, 132orbi12d 913 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
134 elun 4046 . . . 4 (𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
135133, 134syl6bbr 290 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
13624, 135bitrd 280 . 2 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
137136eqrdv 2793 1 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wex 1761  wcel 2081  wrex 3106  cun 3857  {csn 4472  cfv 6225  (class class class)co 7016  cc 10381  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  cmin 10717  cn 11486  0cn0 11745  cz 11829  cuz 12093  ...cfz 12742  APcvdwa 16130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-vdwap 16133
This theorem is referenced by:  vdwapid1  16140  vdwap1  16142  vdwlem1  16146  vdwlem5  16150  vdwlem8  16153  vdwlem12  16157
  Copyright terms: Public domain W3C validator