| Step | Hyp | Ref
| Expression |
| 1 | | peano2nn0 12546 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) |
| 2 | | vdwapval 16998 |
. . . . 5
⊢ (((𝐾 + 1) ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)))) |
| 3 | 1, 2 | syl3an1 1163 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)))) |
| 4 | | simp1 1136 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
ℕ0) |
| 5 | 4 | nn0cnd 12569 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
ℂ) |
| 6 | | ax-1cn 11192 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 7 | | pncan 11493 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 + 1)
− 1) = 𝐾) |
| 8 | 5, 6, 7 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝐾 + 1) − 1)
= 𝐾) |
| 9 | 8 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (0...((𝐾 + 1)
− 1)) = (0...𝐾)) |
| 10 | 9 | eleq2d 2821 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈
(0...((𝐾 + 1) − 1))
↔ 𝑛 ∈ (0...𝐾))) |
| 11 | | nn0uz 12899 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 12 | 4, 11 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
(ℤ≥‘0)) |
| 13 | | elfzp12 13625 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘0) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) |
| 15 | 10, 14 | bitrd 279 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈
(0...((𝐾 + 1) − 1))
↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) |
| 16 | 15 | anbi1d 631 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈
(0...((𝐾 + 1) − 1))
∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
| 17 | | andir 1010 |
. . . . . . 7
⊢ (((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
| 18 | 16, 17 | bitrdi 287 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈
(0...((𝐾 + 1) − 1))
∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
| 19 | 18 | exbidv 1921 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
| 20 | | df-rex 3062 |
. . . . 5
⊢
(∃𝑛 ∈
(0...((𝐾 + 1) −
1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) |
| 21 | | 19.43 1882 |
. . . . . 6
⊢
(∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
| 22 | 21 | bicomi 224 |
. . . . 5
⊢
((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
| 23 | 19, 20, 22 | 3bitr4g 314 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛 ∈
(0...((𝐾 + 1) −
1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
| 24 | 3, 23 | bitrd 279 |
. . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
| 25 | | nncn 12253 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℂ) |
| 26 | 25 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐷 ∈
ℂ) |
| 27 | 26 | mul02d 11438 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (0 · 𝐷) =
0) |
| 28 | 27 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + (0 ·
𝐷)) = (𝐴 + 0)) |
| 29 | | nncn 12253 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
| 30 | 29 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐴 ∈
ℂ) |
| 31 | 30 | addridd 11440 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + 0) = 𝐴) |
| 32 | 28, 31 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + (0 ·
𝐷)) = 𝐴) |
| 33 | 32 | eqeq2d 2747 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 = (𝐴 + (0 · 𝐷)) ↔ 𝑥 = 𝐴)) |
| 34 | | c0ex 11234 |
. . . . . . 7
⊢ 0 ∈
V |
| 35 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑛 = 0 → (𝑛 · 𝐷) = (0 · 𝐷)) |
| 36 | 35 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑛 = 0 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (0 · 𝐷))) |
| 37 | 36 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑛 = 0 → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ 𝑥 = (𝐴 + (0 · 𝐷)))) |
| 38 | 34, 37 | ceqsexv 3516 |
. . . . . 6
⊢
(∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 = (𝐴 + (0 · 𝐷))) |
| 39 | | velsn 4622 |
. . . . . 6
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 40 | 33, 38, 39 | 3bitr4g 314 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ {𝐴})) |
| 41 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈ ((0 + 1)...𝐾)) |
| 42 | | 0p1e1 12367 |
. . . . . . . . . . . . . . 15
⊢ (0 + 1) =
1 |
| 43 | 42 | oveq1i 7420 |
. . . . . . . . . . . . . 14
⊢ ((0 +
1)...𝐾) = (1...𝐾) |
| 44 | 41, 43 | eleqtrdi 2845 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈ (1...𝐾)) |
| 45 | | 1zzd 12628 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 1 ∈
ℤ) |
| 46 | 4 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐾 ∈
ℕ0) |
| 47 | 46 | nn0zd 12619 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐾 ∈
ℤ) |
| 48 | | elfzelz 13546 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((0 + 1)...𝐾) → 𝑛 ∈ ℤ) |
| 49 | 48 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈
ℤ) |
| 50 | | fzsubel 13582 |
. . . . . . . . . . . . . 14
⊢ (((1
∈ ℤ ∧ 𝐾
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))) |
| 51 | 45, 47, 49, 45, 50 | syl22anc 838 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))) |
| 52 | 44, 51 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈ ((1 −
1)...(𝐾 −
1))) |
| 53 | | 1m1e0 12317 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
| 54 | 53 | oveq1i 7420 |
. . . . . . . . . . . 12
⊢ ((1
− 1)...(𝐾 − 1))
= (0...(𝐾 −
1)) |
| 55 | 52, 54 | eleqtrdi 2845 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈ (0...(𝐾 − 1))) |
| 56 | 49 | zcnd 12703 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈
ℂ) |
| 57 | | 1cnd 11235 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 1 ∈
ℂ) |
| 58 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐷 ∈
ℂ) |
| 59 | 56, 57, 58 | subdird 11699 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − (1 · 𝐷))) |
| 60 | 58 | mullidd 11258 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (1 ·
𝐷) = 𝐷) |
| 61 | 60 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 · 𝐷) − (1 · 𝐷)) = ((𝑛 · 𝐷) − 𝐷)) |
| 62 | 59, 61 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − 𝐷)) |
| 63 | 62 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐷 + ((𝑛 − 1) · 𝐷)) = (𝐷 + ((𝑛 · 𝐷) − 𝐷))) |
| 64 | 56, 58 | mulcld 11260 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 · 𝐷) ∈ ℂ) |
| 65 | 58, 64 | pncan3d 11602 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐷 + ((𝑛 · 𝐷) − 𝐷)) = (𝑛 · 𝐷)) |
| 66 | 63, 65 | eqtr2d 2772 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 · 𝐷) = (𝐷 + ((𝑛 − 1) · 𝐷))) |
| 67 | 66 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷)))) |
| 68 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐴 ∈
ℂ) |
| 69 | | subcl 11486 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 −
1) ∈ ℂ) |
| 70 | 56, 6, 69 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈
ℂ) |
| 71 | 70, 58 | mulcld 11260 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) ∈
ℂ) |
| 72 | 68, 58, 71 | addassd 11262 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷)))) |
| 73 | 67, 72 | eqtr4d 2774 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) |
| 74 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 − 1) → (𝑚 · 𝐷) = ((𝑛 − 1) · 𝐷)) |
| 75 | 74 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 − 1) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) |
| 76 | 75 | rspceeqv 3629 |
. . . . . . . . . . 11
⊢ (((𝑛 − 1) ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))) |
| 77 | 55, 73, 76 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) →
∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))) |
| 78 | | eqeq1 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 79 | 78 | rexbidv 3165 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 80 | 77, 79 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 81 | 80 | expimpd 453 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈ ((0 +
1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 82 | 81 | exlimdv 1933 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 83 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ (0...(𝐾 − 1))) |
| 84 | | 0zd 12605 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 0 ∈
ℤ) |
| 85 | 4 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℕ0) |
| 86 | 85 | nn0zd 12619 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℤ) |
| 87 | | peano2zm 12640 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈
ℤ) |
| 89 | | elfzelz 13546 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℤ) |
| 90 | 89 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈
ℤ) |
| 91 | | 1zzd 12628 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈
ℤ) |
| 92 | | fzaddel 13580 |
. . . . . . . . . . . . 13
⊢ (((0
∈ ℤ ∧ (𝐾
− 1) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑚 ∈
(0...(𝐾 − 1)) ↔
(𝑚 + 1) ∈ ((0 +
1)...((𝐾 − 1) +
1)))) |
| 93 | 84, 88, 90, 91, 92 | syl22anc 838 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1)))) |
| 94 | 83, 93 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) +
1))) |
| 95 | 85 | nn0cnd 12569 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℂ) |
| 96 | | npcan 11496 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 −
1) + 1) = 𝐾) |
| 97 | 95, 6, 96 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐾 − 1) + 1) = 𝐾) |
| 98 | 97 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((0 +
1)...((𝐾 − 1) + 1)) =
((0 + 1)...𝐾)) |
| 99 | 94, 98 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...𝐾)) |
| 100 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈
ℂ) |
| 101 | 26 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈
ℂ) |
| 102 | 90 | zcnd 12703 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈
ℂ) |
| 103 | 102, 101 | mulcld 11260 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ) |
| 104 | 100, 101,
103 | addassd 11262 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷)))) |
| 105 | | 1cnd 11235 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈
ℂ) |
| 106 | 102, 105,
101 | adddird 11265 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = ((𝑚 · 𝐷) + (1 · 𝐷))) |
| 107 | 101, 103 | addcomd 11442 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷)) |
| 108 | 101 | mullidd 11258 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (1 ·
𝐷) = 𝐷) |
| 109 | 108 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 · 𝐷) + (1 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷)) |
| 110 | 107, 109 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + (1 · 𝐷))) |
| 111 | 106, 110 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = (𝐷 + (𝑚 · 𝐷))) |
| 112 | 111 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + ((𝑚 + 1) · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷)))) |
| 113 | 104, 112 | eqtr4d 2774 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) |
| 114 | | ovex 7443 |
. . . . . . . . . . 11
⊢ (𝑚 + 1) ∈ V |
| 115 | | eleq1 2823 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → (𝑛 ∈ ((0 + 1)...𝐾) ↔ (𝑚 + 1) ∈ ((0 + 1)...𝐾))) |
| 116 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 + 1) → (𝑛 · 𝐷) = ((𝑚 + 1) · 𝐷)) |
| 117 | 116 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) |
| 118 | 117 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → (((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))) |
| 119 | 115, 118 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))))) |
| 120 | 114, 119 | spcev 3590 |
. . . . . . . . . 10
⊢ (((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
| 121 | 99, 113, 120 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) →
∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
| 122 | | eqeq1 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
| 123 | 122 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ (𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))) |
| 124 | 123 | exbidv 1921 |
. . . . . . . . 9
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))) |
| 125 | 121, 124 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
| 126 | 125 | rexlimdva 3142 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑚 ∈
(0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
| 127 | 82, 126 | impbid 212 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 128 | | nnaddcl 12268 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ) |
| 129 | 128 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + 𝐷) ∈
ℕ) |
| 130 | | vdwapval 16998 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 131 | 129, 130 | syld3an2 1413 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
| 132 | 127, 131 | bitr4d 282 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) |
| 133 | 40, 132 | orbi12d 918 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) |
| 134 | | elun 4133 |
. . . 4
⊢ (𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) |
| 135 | 133, 134 | bitr4di 289 |
. . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) |
| 136 | 24, 135 | bitrd 279 |
. 2
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) |
| 137 | 136 | eqrdv 2734 |
1
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) |