MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapun Structured version   Visualization version   GIF version

Theorem vdwapun 16603
Description: Remove the first element of an arithmetic progression. (Contributed by Mario Carneiro, 11-Sep-2014.)
Assertion
Ref Expression
vdwapun ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))

Proof of Theorem vdwapun
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12203 . . . . 5 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
2 vdwapval 16602 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷))))
31, 2syl3an1 1161 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷))))
4 simp1 1134 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℕ0)
54nn0cnd 12225 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℂ)
6 ax-1cn 10860 . . . . . . . . . . . 12 1 ∈ ℂ
7 pncan 11157 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
85, 6, 7sylancl 585 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐾 + 1) − 1) = 𝐾)
98oveq2d 7271 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0...((𝐾 + 1) − 1)) = (0...𝐾))
109eleq2d 2824 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...((𝐾 + 1) − 1)) ↔ 𝑛 ∈ (0...𝐾)))
11 nn0uz 12549 . . . . . . . . . . 11 0 = (ℤ‘0)
124, 11eleqtrdi 2849 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ (ℤ‘0))
13 elfzp12 13264 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘0) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1510, 14bitrd 278 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...((𝐾 + 1) − 1)) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1615anbi1d 629 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
17 andir 1005 . . . . . . 7 (((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
1816, 17bitrdi 286 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
1918exbidv 1925 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
20 df-rex 3069 . . . . 5 (∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))
21 19.43 1886 . . . . . 6 (∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
2221bicomi 223 . . . . 5 ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
2319, 20, 223bitr4g 313 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
243, 23bitrd 278 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
25 nncn 11911 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
26253ad2ant3 1133 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2726mul02d 11103 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 · 𝐷) = 0)
2827oveq2d 7271 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + (0 · 𝐷)) = (𝐴 + 0))
29 nncn 11911 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
30293ad2ant2 1132 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ℂ)
3130addid1d 11105 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 0) = 𝐴)
3228, 31eqtrd 2778 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + (0 · 𝐷)) = 𝐴)
3332eqeq2d 2749 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 = (𝐴 + (0 · 𝐷)) ↔ 𝑥 = 𝐴))
34 c0ex 10900 . . . . . . 7 0 ∈ V
35 oveq1 7262 . . . . . . . . 9 (𝑛 = 0 → (𝑛 · 𝐷) = (0 · 𝐷))
3635oveq2d 7271 . . . . . . . 8 (𝑛 = 0 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (0 · 𝐷)))
3736eqeq2d 2749 . . . . . . 7 (𝑛 = 0 → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ 𝑥 = (𝐴 + (0 · 𝐷))))
3834, 37ceqsexv 3469 . . . . . 6 (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 = (𝐴 + (0 · 𝐷)))
39 velsn 4574 . . . . . 6 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4033, 38, 393bitr4g 313 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ {𝐴}))
41 simpr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ((0 + 1)...𝐾))
42 0p1e1 12025 . . . . . . . . . . . . . . 15 (0 + 1) = 1
4342oveq1i 7265 . . . . . . . . . . . . . 14 ((0 + 1)...𝐾) = (1...𝐾)
4441, 43eleqtrdi 2849 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ (1...𝐾))
45 1zzd 12281 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 1 ∈ ℤ)
464adantr 480 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐾 ∈ ℕ0)
4746nn0zd 12353 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐾 ∈ ℤ)
48 elfzelz 13185 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((0 + 1)...𝐾) → 𝑛 ∈ ℤ)
4948adantl 481 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ℤ)
50 fzsubel 13221 . . . . . . . . . . . . . 14 (((1 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1))))
5145, 47, 49, 45, 50syl22anc 835 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1))))
5244, 51mpbid 231 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))
53 1m1e0 11975 . . . . . . . . . . . . 13 (1 − 1) = 0
5453oveq1i 7265 . . . . . . . . . . . 12 ((1 − 1)...(𝐾 − 1)) = (0...(𝐾 − 1))
5552, 54eleqtrdi 2849 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ (0...(𝐾 − 1)))
5649zcnd 12356 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ℂ)
57 1cnd 10901 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 1 ∈ ℂ)
5826adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐷 ∈ ℂ)
5956, 57, 58subdird 11362 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − (1 · 𝐷)))
6058mulid2d 10924 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (1 · 𝐷) = 𝐷)
6160oveq2d 7271 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 · 𝐷) − (1 · 𝐷)) = ((𝑛 · 𝐷) − 𝐷))
6259, 61eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − 𝐷))
6362oveq2d 7271 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐷 + ((𝑛 − 1) · 𝐷)) = (𝐷 + ((𝑛 · 𝐷) − 𝐷)))
6456, 58mulcld 10926 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 · 𝐷) ∈ ℂ)
6558, 64pncan3d 11265 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐷 + ((𝑛 · 𝐷) − 𝐷)) = (𝑛 · 𝐷))
6663, 65eqtr2d 2779 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 · 𝐷) = (𝐷 + ((𝑛 − 1) · 𝐷)))
6766oveq2d 7271 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷))))
6830adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐴 ∈ ℂ)
69 subcl 11150 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
7056, 6, 69sylancl 585 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ ℂ)
7170, 58mulcld 10926 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) ∈ ℂ)
7268, 58, 71addassd 10928 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷))))
7367, 72eqtr4d 2781 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)))
74 oveq1 7262 . . . . . . . . . . . . 13 (𝑚 = (𝑛 − 1) → (𝑚 · 𝐷) = ((𝑛 − 1) · 𝐷))
7574oveq2d 7271 . . . . . . . . . . . 12 (𝑚 = (𝑛 − 1) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)))
7675rspceeqv 3567 . . . . . . . . . . 11 (((𝑛 − 1) ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))
7755, 73, 76syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))
78 eqeq1 2742 . . . . . . . . . . 11 (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
7978rexbidv 3225 . . . . . . . . . 10 (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8077, 79syl5ibrcom 246 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8180expimpd 453 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8281exlimdv 1937 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
83 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ (0...(𝐾 − 1)))
84 0zd 12261 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 0 ∈ ℤ)
854adantr 480 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℕ0)
8685nn0zd 12353 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℤ)
87 peano2zm 12293 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
8886, 87syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
89 elfzelz 13185 . . . . . . . . . . . . . 14 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℤ)
9089adantl 481 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℤ)
91 1zzd 12281 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℤ)
92 fzaddel 13219 . . . . . . . . . . . . 13 (((0 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1))))
9384, 88, 90, 91, 92syl22anc 835 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1))))
9483, 93mpbid 231 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1)))
9585nn0cnd 12225 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℂ)
96 npcan 11160 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
9795, 6, 96sylancl 585 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐾 − 1) + 1) = 𝐾)
9897oveq2d 7271 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((0 + 1)...((𝐾 − 1) + 1)) = ((0 + 1)...𝐾))
9994, 98eleqtrd 2841 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...𝐾))
10030adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
10126adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
10290zcnd 12356 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
103102, 101mulcld 10926 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
104100, 101, 103addassd 10928 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷))))
105 1cnd 10901 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
106102, 105, 101adddird 10931 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = ((𝑚 · 𝐷) + (1 · 𝐷)))
107101, 103addcomd 11107 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷))
108101mulid2d 10924 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (1 · 𝐷) = 𝐷)
109108oveq2d 7271 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 · 𝐷) + (1 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷))
110107, 109eqtr4d 2781 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + (1 · 𝐷)))
111106, 110eqtr4d 2781 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = (𝐷 + (𝑚 · 𝐷)))
112111oveq2d 7271 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + ((𝑚 + 1) · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷))))
113104, 112eqtr4d 2781 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))
114 ovex 7288 . . . . . . . . . . 11 (𝑚 + 1) ∈ V
115 eleq1 2826 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → (𝑛 ∈ ((0 + 1)...𝐾) ↔ (𝑚 + 1) ∈ ((0 + 1)...𝐾)))
116 oveq1 7262 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑛 · 𝐷) = ((𝑚 + 1) · 𝐷))
117116oveq2d 7271 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))
118117eqeq2d 2749 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → (((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))))
119115, 118anbi12d 630 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))))
120114, 119spcev 3535 . . . . . . . . . 10 (((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
12199, 113, 120syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
122 eqeq1 2742 . . . . . . . . . . 11 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
123122anbi2d 628 . . . . . . . . . 10 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ (𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))))
124123exbidv 1925 . . . . . . . . 9 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))))
125121, 124syl5ibrcom 246 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
126125rexlimdva 3212 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
12782, 126impbid 211 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
128 nnaddcl 11926 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ)
1291283adant1 1128 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ)
130 vdwapval 16602 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
131129, 130syld3an2 1409 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
132127, 131bitr4d 281 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
13340, 132orbi12d 915 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
134 elun 4079 . . . 4 (𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
135133, 134bitr4di 288 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
13624, 135bitrd 278 . 2 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
137136eqrdv 2736 1 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cun 3881  {csn 4558  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  APcvdwa 16594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-vdwap 16597
This theorem is referenced by:  vdwapid1  16604  vdwap1  16606  vdwlem1  16610  vdwlem5  16614  vdwlem8  16617  vdwlem12  16621
  Copyright terms: Public domain W3C validator