| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | peano2nn0 12568 | . . . . 5
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) | 
| 2 |  | vdwapval 17012 | . . . . 5
⊢ (((𝐾 + 1) ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)))) | 
| 3 | 1, 2 | syl3an1 1163 | . . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)))) | 
| 4 |  | simp1 1136 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
ℕ0) | 
| 5 | 4 | nn0cnd 12591 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
ℂ) | 
| 6 |  | ax-1cn 11214 | . . . . . . . . . . . 12
⊢ 1 ∈
ℂ | 
| 7 |  | pncan 11515 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 + 1)
− 1) = 𝐾) | 
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝐾 + 1) − 1)
= 𝐾) | 
| 9 | 8 | oveq2d 7448 | . . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (0...((𝐾 + 1)
− 1)) = (0...𝐾)) | 
| 10 | 9 | eleq2d 2826 | . . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈
(0...((𝐾 + 1) − 1))
↔ 𝑛 ∈ (0...𝐾))) | 
| 11 |  | nn0uz 12921 | . . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) | 
| 12 | 4, 11 | eleqtrdi 2850 | . . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
(ℤ≥‘0)) | 
| 13 |  | elfzp12 13644 | . . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘0) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) | 
| 14 | 12, 13 | syl 17 | . . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) | 
| 15 | 10, 14 | bitrd 279 | . . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈
(0...((𝐾 + 1) − 1))
↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) | 
| 16 | 15 | anbi1d 631 | . . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈
(0...((𝐾 + 1) − 1))
∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) | 
| 17 |  | andir 1010 | . . . . . . 7
⊢ (((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) | 
| 18 | 16, 17 | bitrdi 287 | . . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈
(0...((𝐾 + 1) − 1))
∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) | 
| 19 | 18 | exbidv 1920 | . . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) | 
| 20 |  | df-rex 3070 | . . . . 5
⊢
(∃𝑛 ∈
(0...((𝐾 + 1) −
1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) | 
| 21 |  | 19.43 1881 | . . . . . 6
⊢
(∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) | 
| 22 | 21 | bicomi 224 | . . . . 5
⊢
((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) | 
| 23 | 19, 20, 22 | 3bitr4g 314 | . . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛 ∈
(0...((𝐾 + 1) −
1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) | 
| 24 | 3, 23 | bitrd 279 | . . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) | 
| 25 |  | nncn 12275 | . . . . . . . . . . 11
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℂ) | 
| 26 | 25 | 3ad2ant3 1135 | . . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐷 ∈
ℂ) | 
| 27 | 26 | mul02d 11460 | . . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (0 · 𝐷) =
0) | 
| 28 | 27 | oveq2d 7448 | . . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + (0 ·
𝐷)) = (𝐴 + 0)) | 
| 29 |  | nncn 12275 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) | 
| 30 | 29 | 3ad2ant2 1134 | . . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐴 ∈
ℂ) | 
| 31 | 30 | addridd 11462 | . . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + 0) = 𝐴) | 
| 32 | 28, 31 | eqtrd 2776 | . . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + (0 ·
𝐷)) = 𝐴) | 
| 33 | 32 | eqeq2d 2747 | . . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 = (𝐴 + (0 · 𝐷)) ↔ 𝑥 = 𝐴)) | 
| 34 |  | c0ex 11256 | . . . . . . 7
⊢ 0 ∈
V | 
| 35 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑛 = 0 → (𝑛 · 𝐷) = (0 · 𝐷)) | 
| 36 | 35 | oveq2d 7448 | . . . . . . . 8
⊢ (𝑛 = 0 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (0 · 𝐷))) | 
| 37 | 36 | eqeq2d 2747 | . . . . . . 7
⊢ (𝑛 = 0 → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ 𝑥 = (𝐴 + (0 · 𝐷)))) | 
| 38 | 34, 37 | ceqsexv 3531 | . . . . . 6
⊢
(∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 = (𝐴 + (0 · 𝐷))) | 
| 39 |  | velsn 4641 | . . . . . 6
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | 
| 40 | 33, 38, 39 | 3bitr4g 314 | . . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ {𝐴})) | 
| 41 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈ ((0 + 1)...𝐾)) | 
| 42 |  | 0p1e1 12389 | . . . . . . . . . . . . . . 15
⊢ (0 + 1) =
1 | 
| 43 | 42 | oveq1i 7442 | . . . . . . . . . . . . . 14
⊢ ((0 +
1)...𝐾) = (1...𝐾) | 
| 44 | 41, 43 | eleqtrdi 2850 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈ (1...𝐾)) | 
| 45 |  | 1zzd 12650 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 1 ∈
ℤ) | 
| 46 | 4 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐾 ∈
ℕ0) | 
| 47 | 46 | nn0zd 12641 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐾 ∈
ℤ) | 
| 48 |  | elfzelz 13565 | . . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((0 + 1)...𝐾) → 𝑛 ∈ ℤ) | 
| 49 | 48 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈
ℤ) | 
| 50 |  | fzsubel 13601 | . . . . . . . . . . . . . 14
⊢ (((1
∈ ℤ ∧ 𝐾
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))) | 
| 51 | 45, 47, 49, 45, 50 | syl22anc 838 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))) | 
| 52 | 44, 51 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈ ((1 −
1)...(𝐾 −
1))) | 
| 53 |  | 1m1e0 12339 | . . . . . . . . . . . . 13
⊢ (1
− 1) = 0 | 
| 54 | 53 | oveq1i 7442 | . . . . . . . . . . . 12
⊢ ((1
− 1)...(𝐾 − 1))
= (0...(𝐾 −
1)) | 
| 55 | 52, 54 | eleqtrdi 2850 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈ (0...(𝐾 − 1))) | 
| 56 | 49 | zcnd 12725 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈
ℂ) | 
| 57 |  | 1cnd 11257 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 1 ∈
ℂ) | 
| 58 | 26 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐷 ∈
ℂ) | 
| 59 | 56, 57, 58 | subdird 11721 | . . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − (1 · 𝐷))) | 
| 60 | 58 | mullidd 11280 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (1 ·
𝐷) = 𝐷) | 
| 61 | 60 | oveq2d 7448 | . . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 · 𝐷) − (1 · 𝐷)) = ((𝑛 · 𝐷) − 𝐷)) | 
| 62 | 59, 61 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − 𝐷)) | 
| 63 | 62 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐷 + ((𝑛 − 1) · 𝐷)) = (𝐷 + ((𝑛 · 𝐷) − 𝐷))) | 
| 64 | 56, 58 | mulcld 11282 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 · 𝐷) ∈ ℂ) | 
| 65 | 58, 64 | pncan3d 11624 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐷 + ((𝑛 · 𝐷) − 𝐷)) = (𝑛 · 𝐷)) | 
| 66 | 63, 65 | eqtr2d 2777 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 · 𝐷) = (𝐷 + ((𝑛 − 1) · 𝐷))) | 
| 67 | 66 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷)))) | 
| 68 | 30 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐴 ∈
ℂ) | 
| 69 |  | subcl 11508 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 −
1) ∈ ℂ) | 
| 70 | 56, 6, 69 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈
ℂ) | 
| 71 | 70, 58 | mulcld 11282 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) ∈
ℂ) | 
| 72 | 68, 58, 71 | addassd 11284 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷)))) | 
| 73 | 67, 72 | eqtr4d 2779 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) | 
| 74 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 − 1) → (𝑚 · 𝐷) = ((𝑛 − 1) · 𝐷)) | 
| 75 | 74 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 − 1) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) | 
| 76 | 75 | rspceeqv 3644 | . . . . . . . . . . 11
⊢ (((𝑛 − 1) ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))) | 
| 77 | 55, 73, 76 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) →
∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))) | 
| 78 |  | eqeq1 2740 | . . . . . . . . . . 11
⊢ (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 79 | 78 | rexbidv 3178 | . . . . . . . . . 10
⊢ (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 80 | 77, 79 | syl5ibrcom 247 | . . . . . . . . 9
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 81 | 80 | expimpd 453 | . . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈ ((0 +
1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 82 | 81 | exlimdv 1932 | . . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 83 |  | simpr 484 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ (0...(𝐾 − 1))) | 
| 84 |  | 0zd 12627 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 0 ∈
ℤ) | 
| 85 | 4 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℕ0) | 
| 86 | 85 | nn0zd 12641 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℤ) | 
| 87 |  | peano2zm 12662 | . . . . . . . . . . . . . 14
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) | 
| 88 | 86, 87 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈
ℤ) | 
| 89 |  | elfzelz 13565 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℤ) | 
| 90 | 89 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈
ℤ) | 
| 91 |  | 1zzd 12650 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈
ℤ) | 
| 92 |  | fzaddel 13599 | . . . . . . . . . . . . 13
⊢ (((0
∈ ℤ ∧ (𝐾
− 1) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑚 ∈
(0...(𝐾 − 1)) ↔
(𝑚 + 1) ∈ ((0 +
1)...((𝐾 − 1) +
1)))) | 
| 93 | 84, 88, 90, 91, 92 | syl22anc 838 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1)))) | 
| 94 | 83, 93 | mpbid 232 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) +
1))) | 
| 95 | 85 | nn0cnd 12591 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℂ) | 
| 96 |  | npcan 11518 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 −
1) + 1) = 𝐾) | 
| 97 | 95, 6, 96 | sylancl 586 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐾 − 1) + 1) = 𝐾) | 
| 98 | 97 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((0 +
1)...((𝐾 − 1) + 1)) =
((0 + 1)...𝐾)) | 
| 99 | 94, 98 | eleqtrd 2842 | . . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...𝐾)) | 
| 100 | 30 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈
ℂ) | 
| 101 | 26 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈
ℂ) | 
| 102 | 90 | zcnd 12725 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈
ℂ) | 
| 103 | 102, 101 | mulcld 11282 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ) | 
| 104 | 100, 101,
103 | addassd 11284 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷)))) | 
| 105 |  | 1cnd 11257 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈
ℂ) | 
| 106 | 102, 105,
101 | adddird 11287 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = ((𝑚 · 𝐷) + (1 · 𝐷))) | 
| 107 | 101, 103 | addcomd 11464 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷)) | 
| 108 | 101 | mullidd 11280 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (1 ·
𝐷) = 𝐷) | 
| 109 | 108 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 · 𝐷) + (1 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷)) | 
| 110 | 107, 109 | eqtr4d 2779 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + (1 · 𝐷))) | 
| 111 | 106, 110 | eqtr4d 2779 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = (𝐷 + (𝑚 · 𝐷))) | 
| 112 | 111 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + ((𝑚 + 1) · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷)))) | 
| 113 | 104, 112 | eqtr4d 2779 | . . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) | 
| 114 |  | ovex 7465 | . . . . . . . . . . 11
⊢ (𝑚 + 1) ∈ V | 
| 115 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → (𝑛 ∈ ((0 + 1)...𝐾) ↔ (𝑚 + 1) ∈ ((0 + 1)...𝐾))) | 
| 116 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 + 1) → (𝑛 · 𝐷) = ((𝑚 + 1) · 𝐷)) | 
| 117 | 116 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) | 
| 118 | 117 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → (((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))) | 
| 119 | 115, 118 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))))) | 
| 120 | 114, 119 | spcev 3605 | . . . . . . . . . 10
⊢ (((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) | 
| 121 | 99, 113, 120 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) →
∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) | 
| 122 |  | eqeq1 2740 | . . . . . . . . . . 11
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) | 
| 123 | 122 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ (𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))) | 
| 124 | 123 | exbidv 1920 | . . . . . . . . 9
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))) | 
| 125 | 121, 124 | syl5ibrcom 247 | . . . . . . . 8
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) | 
| 126 | 125 | rexlimdva 3154 | . . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑚 ∈
(0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) | 
| 127 | 82, 126 | impbid 212 | . . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 128 |  | nnaddcl 12290 | . . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ) | 
| 129 | 128 | 3adant1 1130 | . . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + 𝐷) ∈
ℕ) | 
| 130 |  | vdwapval 17012 | . . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 131 | 129, 130 | syld3an2 1412 | . . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) | 
| 132 | 127, 131 | bitr4d 282 | . . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) | 
| 133 | 40, 132 | orbi12d 918 | . . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) | 
| 134 |  | elun 4152 | . . . 4
⊢ (𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) | 
| 135 | 133, 134 | bitr4di 289 | . . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) | 
| 136 | 24, 135 | bitrd 279 | . 2
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) | 
| 137 | 136 | eqrdv 2734 | 1
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) |