MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Structured version   Visualization version   GIF version

Theorem fnssresb 6624
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 6500 . 2 ((𝐹𝐵) Fn 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵))
2 fnfun 6603 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
32funresd 6545 . . . 4 (𝐹 Fn 𝐴 → Fun (𝐹𝐵))
43biantrurd 534 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵)))
5 ssdmres 5961 . . . 4 (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹𝐵) = 𝐵)
6 fndm 6606 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3977 . . . 4 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
85, 7bitr3id 285 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵𝐵𝐴))
94, 8bitr3d 281 . 2 (𝐹 Fn 𝐴 → ((Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵) ↔ 𝐵𝐴))
101, 9bitrid 283 1 (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wss 3911  dom cdm 5634  cres 5636  Fun wfun 6491   Fn wfn 6492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-res 5646  df-fun 6499  df-fn 6500
This theorem is referenced by:  fnssres  6625  wrdred1hash  14450  plyreres  25646  xrge0pluscn  32524  icoreresf  35826  fnbrafvb  45393  rhmsscrnghm  46331  rngcrescrhm  46390  rngcrescrhmALTV  46408
  Copyright terms: Public domain W3C validator