![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnssresb | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
fnssresb | ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6189 | . 2 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵)) | |
2 | fnfun 6284 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | funres 6228 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐵)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun (𝐹 ↾ 𝐵)) |
5 | 4 | biantrurd 525 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵))) |
6 | ssdmres 5719 | . . . 4 ⊢ (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐵) = 𝐵) | |
7 | fndm 6286 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 7 | sseq2d 3884 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
9 | 6, 8 | syl5bbr 277 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
10 | 5, 9 | bitr3d 273 | . 2 ⊢ (𝐹 Fn 𝐴 → ((Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵) ↔ 𝐵 ⊆ 𝐴)) |
11 | 1, 10 | syl5bb 275 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ⊆ wss 3824 dom cdm 5404 ↾ cres 5406 Fun wfun 6180 Fn wfn 6181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-br 4927 df-opab 4989 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-res 5416 df-fun 6188 df-fn 6189 |
This theorem is referenced by: fnssres 6301 wrdred1hash 13723 plyreres 24591 xrge0pluscn 30860 icoreresf 34108 fnbrafvb 42789 rhmsscrnghm 43691 rngcrescrhm 43750 rngcrescrhmALTV 43768 |
Copyright terms: Public domain | W3C validator |