MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Structured version   Visualization version   GIF version

Theorem fnssresb 6640
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 6514 . 2 ((𝐹𝐵) Fn 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵))
2 fnfun 6618 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
32funresd 6559 . . . 4 (𝐹 Fn 𝐴 → Fun (𝐹𝐵))
43biantrurd 532 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵)))
5 ssdmres 5984 . . . 4 (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹𝐵) = 𝐵)
6 fndm 6621 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3979 . . . 4 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
85, 7bitr3id 285 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵𝐵𝐴))
94, 8bitr3d 281 . 2 (𝐹 Fn 𝐴 → ((Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵) ↔ 𝐵𝐴))
101, 9bitrid 283 1 (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3914  dom cdm 5638  cres 5640  Fun wfun 6505   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-fun 6513  df-fn 6514
This theorem is referenced by:  fnssres  6641  wrdred1hash  14526  rhmsscrnghm  20574  rngcrescrhm  20593  plyreres  26190  xrge0pluscn  33930  icoreresf  37340  fnbrafvb  47155  rngcrescrhmALTV  48268
  Copyright terms: Public domain W3C validator