| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnssresb | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| fnssresb | ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6514 | . 2 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵)) | |
| 2 | fnfun 6618 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 2 | funresd 6559 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun (𝐹 ↾ 𝐵)) |
| 4 | 3 | biantrurd 532 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵))) |
| 5 | ssdmres 5984 | . . . 4 ⊢ (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐵) = 𝐵) | |
| 6 | fndm 6621 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 7 | 6 | sseq2d 3979 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 8 | 5, 7 | bitr3id 285 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| 9 | 4, 8 | bitr3d 281 | . 2 ⊢ (𝐹 Fn 𝐴 → ((Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵) ↔ 𝐵 ⊆ 𝐴)) |
| 10 | 1, 9 | bitrid 283 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnssres 6641 wrdred1hash 14526 rhmsscrnghm 20574 rngcrescrhm 20593 plyreres 26190 xrge0pluscn 33930 icoreresf 37340 fnbrafvb 47155 rngcrescrhmALTV 48268 |
| Copyright terms: Public domain | W3C validator |