MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Structured version   Visualization version   GIF version

Theorem fnssresb 6660
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 6534 . 2 ((𝐹𝐵) Fn 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵))
2 fnfun 6638 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
32funresd 6579 . . . 4 (𝐹 Fn 𝐴 → Fun (𝐹𝐵))
43biantrurd 532 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵)))
5 ssdmres 6000 . . . 4 (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹𝐵) = 𝐵)
6 fndm 6641 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3991 . . . 4 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
85, 7bitr3id 285 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵𝐵𝐴))
94, 8bitr3d 281 . 2 (𝐹 Fn 𝐴 → ((Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵) ↔ 𝐵𝐴))
101, 9bitrid 283 1 (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3926  dom cdm 5654  cres 5656  Fun wfun 6525   Fn wfn 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-fun 6533  df-fn 6534
This theorem is referenced by:  fnssres  6661  wrdred1hash  14579  rhmsscrnghm  20625  rngcrescrhm  20644  plyreres  26242  xrge0pluscn  33971  icoreresf  37370  fnbrafvb  47183  rngcrescrhmALTV  48255
  Copyright terms: Public domain W3C validator