MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Structured version   Visualization version   GIF version

Theorem fnssresb 6702
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 6576 . 2 ((𝐹𝐵) Fn 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵))
2 fnfun 6679 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
32funresd 6621 . . . 4 (𝐹 Fn 𝐴 → Fun (𝐹𝐵))
43biantrurd 532 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵 ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵)))
5 ssdmres 6042 . . . 4 (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹𝐵) = 𝐵)
6 fndm 6682 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 4041 . . . 4 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
85, 7bitr3id 285 . . 3 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = 𝐵𝐵𝐴))
94, 8bitr3d 281 . 2 (𝐹 Fn 𝐴 → ((Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = 𝐵) ↔ 𝐵𝐴))
101, 9bitrid 283 1 (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wss 3976  dom cdm 5700  cres 5702  Fun wfun 6567   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-fun 6575  df-fn 6576
This theorem is referenced by:  fnssres  6703  wrdred1hash  14609  rhmsscrnghm  20687  rngcrescrhm  20706  plyreres  26342  xrge0pluscn  33886  icoreresf  37318  fnbrafvb  47069  rngcrescrhmALTV  48003
  Copyright terms: Public domain W3C validator