| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdisj | Structured version Visualization version GIF version | ||
| Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdisj | ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5949 | . . 3 ⊢ Rel (𝐹 ↾ 𝐵) | |
| 2 | reldm0 5863 | . . 3 ⊢ (Rel (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅) |
| 4 | dmres 5956 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
| 5 | incom 4154 | . . . . 5 ⊢ (𝐵 ∩ dom 𝐹) = (dom 𝐹 ∩ 𝐵) | |
| 6 | 4, 5 | eqtri 2754 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (dom 𝐹 ∩ 𝐵) |
| 7 | fndm 6579 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 8 | 7 | ineq1d 4164 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
| 9 | 6, 8 | eqtrid 2778 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ↾ 𝐵) = (𝐴 ∩ 𝐵)) |
| 10 | 9 | eqeq1d 2733 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
| 11 | 3, 10 | bitr2id 284 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∩ cin 3896 ∅c0 4278 dom cdm 5611 ↾ cres 5613 Rel wrel 5616 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-dm 5621 df-res 5623 df-fn 6479 |
| This theorem is referenced by: funressn 7087 fvsnun2 7112 dif1enlem 9064 axdc3lem4 10339 fseq1p1m1 13493 hashgval 14235 hashinf 14237 pwssplit1 20988 mplmonmul 21966 wwlksm1edg 29854 eulerpartlemt 34376 poimirlem3 37663 pwssplit4 43122 isubgr0uhgr 47904 |
| Copyright terms: Public domain | W3C validator |