MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresdisj Structured version   Visualization version   GIF version

Theorem fnresdisj 6700
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 6035 . . 3 Rel (𝐹𝐵)
2 reldm0 5952 . . 3 (Rel (𝐹𝐵) → ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅)
4 dmres 6041 . . . . 5 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
5 incom 4230 . . . . 5 (𝐵 ∩ dom 𝐹) = (dom 𝐹𝐵)
64, 5eqtri 2768 . . . 4 dom (𝐹𝐵) = (dom 𝐹𝐵)
7 fndm 6682 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
87ineq1d 4240 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵) = (𝐴𝐵))
96, 8eqtrid 2792 . . 3 (𝐹 Fn 𝐴 → dom (𝐹𝐵) = (𝐴𝐵))
109eqeq1d 2742 . 2 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = ∅ ↔ (𝐴𝐵) = ∅))
113, 10bitr2id 284 1 (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  cin 3975  c0 4352  dom cdm 5700  cres 5702  Rel wrel 5705   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-res 5712  df-fn 6576
This theorem is referenced by:  funressn  7193  fvsnun2  7217  dif1enlem  9222  dif1enlemOLD  9223  axdc3lem4  10522  fseq1p1m1  13658  hashgval  14382  hashinf  14384  pwssplit1  21081  mplmonmul  22077  wwlksm1edg  29914  eulerpartlemt  34336  poimirlem3  37583  pwssplit4  43046  isubgr0uhgr  47743
  Copyright terms: Public domain W3C validator