MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresdisj Structured version   Visualization version   GIF version

Theorem fnresdisj 6671
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 6011 . . 3 Rel (𝐹𝐵)
2 reldm0 5928 . . 3 (Rel (𝐹𝐵) → ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅)
4 dmres 6004 . . . . 5 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
5 incom 4202 . . . . 5 (𝐵 ∩ dom 𝐹) = (dom 𝐹𝐵)
64, 5eqtri 2761 . . . 4 dom (𝐹𝐵) = (dom 𝐹𝐵)
7 fndm 6653 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
87ineq1d 4212 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵) = (𝐴𝐵))
96, 8eqtrid 2785 . . 3 (𝐹 Fn 𝐴 → dom (𝐹𝐵) = (𝐴𝐵))
109eqeq1d 2735 . 2 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = ∅ ↔ (𝐴𝐵) = ∅))
113, 10bitr2id 284 1 (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  cin 3948  c0 4323  dom cdm 5677  cres 5679  Rel wrel 5682   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-dm 5687  df-res 5689  df-fn 6547
This theorem is referenced by:  funressn  7157  fvsnun2  7181  dif1enlem  9156  dif1enlemOLD  9157  axdc3lem4  10448  fseq1p1m1  13575  hashgval  14293  hashinf  14295  pwssplit1  20670  mplmonmul  21591  wwlksm1edg  29135  eulerpartlemt  33370  poimirlem3  36491  pwssplit4  41831
  Copyright terms: Public domain W3C validator