Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnresdisj | Structured version Visualization version GIF version |
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fnresdisj | ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5909 | . . 3 ⊢ Rel (𝐹 ↾ 𝐵) | |
2 | reldm0 5826 | . . 3 ⊢ (Rel (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅) |
4 | dmres 5902 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
5 | incom 4131 | . . . . 5 ⊢ (𝐵 ∩ dom 𝐹) = (dom 𝐹 ∩ 𝐵) | |
6 | 4, 5 | eqtri 2766 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (dom 𝐹 ∩ 𝐵) |
7 | fndm 6520 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 7 | ineq1d 4142 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
9 | 6, 8 | eqtrid 2790 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ↾ 𝐵) = (𝐴 ∩ 𝐵)) |
10 | 9 | eqeq1d 2740 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
11 | 3, 10 | bitr2id 283 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∩ cin 3882 ∅c0 4253 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 df-fn 6421 |
This theorem is referenced by: funressn 7013 fvsnun2 7037 dif1enlem 8905 axdc3lem4 10140 fseq1p1m1 13259 hashgval 13975 hashinf 13977 pwssplit1 20236 mplmonmul 21147 wwlksm1edg 28147 eulerpartlemt 32238 poimirlem3 35707 pwssplit4 40830 |
Copyright terms: Public domain | W3C validator |