MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresdisj Structured version   Visualization version   GIF version

Theorem fnresdisj 6552
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 5920 . . 3 Rel (𝐹𝐵)
2 reldm0 5837 . . 3 (Rel (𝐹𝐵) → ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅)
4 dmres 5913 . . . . 5 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
5 incom 4135 . . . . 5 (𝐵 ∩ dom 𝐹) = (dom 𝐹𝐵)
64, 5eqtri 2766 . . . 4 dom (𝐹𝐵) = (dom 𝐹𝐵)
7 fndm 6536 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
87ineq1d 4145 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵) = (𝐴𝐵))
96, 8eqtrid 2790 . . 3 (𝐹 Fn 𝐴 → dom (𝐹𝐵) = (𝐴𝐵))
109eqeq1d 2740 . 2 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = ∅ ↔ (𝐴𝐵) = ∅))
113, 10bitr2id 284 1 (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  cin 3886  c0 4256  dom cdm 5589  cres 5591  Rel wrel 5594   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-res 5601  df-fn 6436
This theorem is referenced by:  funressn  7031  fvsnun2  7055  dif1enlem  8943  axdc3lem4  10209  fseq1p1m1  13330  hashgval  14047  hashinf  14049  pwssplit1  20321  mplmonmul  21237  wwlksm1edg  28246  eulerpartlemt  32338  poimirlem3  35780  pwssplit4  40914
  Copyright terms: Public domain W3C validator