Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnresdisj | Structured version Visualization version GIF version |
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fnresdisj | ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5920 | . . 3 ⊢ Rel (𝐹 ↾ 𝐵) | |
2 | reldm0 5837 | . . 3 ⊢ (Rel (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅) |
4 | dmres 5913 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
5 | incom 4135 | . . . . 5 ⊢ (𝐵 ∩ dom 𝐹) = (dom 𝐹 ∩ 𝐵) | |
6 | 4, 5 | eqtri 2766 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (dom 𝐹 ∩ 𝐵) |
7 | fndm 6536 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 7 | ineq1d 4145 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
9 | 6, 8 | eqtrid 2790 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ↾ 𝐵) = (𝐴 ∩ 𝐵)) |
10 | 9 | eqeq1d 2740 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
11 | 3, 10 | bitr2id 284 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∩ cin 3886 ∅c0 4256 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 df-fn 6436 |
This theorem is referenced by: funressn 7031 fvsnun2 7055 dif1enlem 8943 axdc3lem4 10209 fseq1p1m1 13330 hashgval 14047 hashinf 14049 pwssplit1 20321 mplmonmul 21237 wwlksm1edg 28246 eulerpartlemt 32338 poimirlem3 35780 pwssplit4 40914 |
Copyright terms: Public domain | W3C validator |