| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdisj | Structured version Visualization version GIF version | ||
| Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdisj | ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5960 | . . 3 ⊢ Rel (𝐹 ↾ 𝐵) | |
| 2 | reldm0 5874 | . . 3 ⊢ (Rel (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅) |
| 4 | dmres 5967 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
| 5 | incom 4162 | . . . . 5 ⊢ (𝐵 ∩ dom 𝐹) = (dom 𝐹 ∩ 𝐵) | |
| 6 | 4, 5 | eqtri 2752 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (dom 𝐹 ∩ 𝐵) |
| 7 | fndm 6589 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 8 | 7 | ineq1d 4172 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
| 9 | 6, 8 | eqtrid 2776 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ↾ 𝐵) = (𝐴 ∩ 𝐵)) |
| 10 | 9 | eqeq1d 2731 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
| 11 | 3, 10 | bitr2id 284 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∩ cin 3904 ∅c0 4286 dom cdm 5623 ↾ cres 5625 Rel wrel 5628 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-res 5635 df-fn 6489 |
| This theorem is referenced by: funressn 7097 fvsnun2 7123 dif1enlem 9080 dif1enlemOLD 9081 axdc3lem4 10366 fseq1p1m1 13520 hashgval 14259 hashinf 14261 pwssplit1 20982 mplmonmul 21960 wwlksm1edg 29845 eulerpartlemt 34358 poimirlem3 37622 pwssplit4 43082 isubgr0uhgr 47877 |
| Copyright terms: Public domain | W3C validator |