MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresdisj Structured version   Visualization version   GIF version

Theorem fnresdisj 6337
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 5763 . . 3 Rel (𝐹𝐵)
2 reldm0 5680 . . 3 (Rel (𝐹𝐵) → ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅)
4 dmres 5756 . . . . 5 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
5 incom 4099 . . . . 5 (𝐵 ∩ dom 𝐹) = (dom 𝐹𝐵)
64, 5eqtri 2819 . . . 4 dom (𝐹𝐵) = (dom 𝐹𝐵)
7 fndm 6325 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
87ineq1d 4108 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵) = (𝐴𝐵))
96, 8syl5eq 2843 . . 3 (𝐹 Fn 𝐴 → dom (𝐹𝐵) = (𝐴𝐵))
109eqeq1d 2797 . 2 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = ∅ ↔ (𝐴𝐵) = ∅))
113, 10syl5rbb 285 1 (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1522  cin 3858  c0 4211  dom cdm 5443  cres 5445  Rel wrel 5448   Fn wfn 6220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-xp 5449  df-rel 5450  df-dm 5453  df-res 5455  df-fn 6228
This theorem is referenced by:  funressn  6784  fvsnun2  6810  fvsnun2OLD  6812  axdc3lem4  9721  fseq1p1m1  12831  hashgval  13543  hashinf  13545  pwssplit1  19521  mplmonmul  19932  wwlksm1edg  27346  eulerpartlemt  31246  poimirlem3  34426  pwssplit4  39174
  Copyright terms: Public domain W3C validator