Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chordthmALT Structured version   Visualization version   GIF version

Theorem chordthmALT 43370
Description: The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26238 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26239. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26239 is a Virtual Deduction User's Proof transcription of chordthm 26239. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 43370 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
chordthmALT.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmALT.A (𝜑𝐴 ∈ ℂ)
chordthmALT.B (𝜑𝐵 ∈ ℂ)
chordthmALT.C (𝜑𝐶 ∈ ℂ)
chordthmALT.D (𝜑𝐷 ∈ ℂ)
chordthmALT.P (𝜑𝑃 ∈ ℂ)
chordthmALT.AneP (𝜑𝐴𝑃)
chordthmALT.BneP (𝜑𝐵𝑃)
chordthmALT.CneP (𝜑𝐶𝑃)
chordthmALT.DneP (𝜑𝐷𝑃)
chordthmALT.APB (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
chordthmALT.CPD (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
chordthmALT.Q (𝜑𝑄 ∈ ℂ)
chordthmALT.ABcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmALT.ACcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
chordthmALT.ADcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
Assertion
Ref Expression
chordthmALT (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem chordthmALT
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmALT.CPD . . . 4 (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
2 chordthmALT.angdef . . . . 5 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
3 chordthmALT.C . . . . 5 (𝜑𝐶 ∈ ℂ)
4 chordthmALT.P . . . . 5 (𝜑𝑃 ∈ ℂ)
5 chordthmALT.D . . . . 5 (𝜑𝐷 ∈ ℂ)
6 chordthmALT.CneP . . . . 5 (𝜑𝐶𝑃)
7 chordthmALT.DneP . . . . . 6 (𝜑𝐷𝑃)
87necomd 2995 . . . . 5 (𝜑𝑃𝐷)
92, 3, 4, 5, 6, 8angpieqvd 26233 . . . 4 (𝜑 → (((𝐶𝑃)𝐹(𝐷𝑃)) = π ↔ ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
101, 9mpbid 231 . . 3 (𝜑 → ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
11 df-rex 3070 . . . 4 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) ↔ ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1211biimpi 215 . . 3 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1310, 12syl 17 . 2 (𝜑 → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
14 chordthmALT.APB . . . . . . . 8 (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
15 chordthmALT.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
16 chordthmALT.B . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
17 chordthmALT.AneP . . . . . . . . 9 (𝜑𝐴𝑃)
18 chordthmALT.BneP . . . . . . . . . 10 (𝜑𝐵𝑃)
1918necomd 2995 . . . . . . . . 9 (𝜑𝑃𝐵)
202, 15, 4, 16, 17, 19angpieqvd 26233 . . . . . . . 8 (𝜑 → (((𝐴𝑃)𝐹(𝐵𝑃)) = π ↔ ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2114, 20mpbid 231 . . . . . . 7 (𝜑 → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
22 df-rex 3070 . . . . . . . 8 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) ↔ ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2322biimpi 215 . . . . . . 7 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2421, 23syl 17 . . . . . 6 (𝜑 → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2524adantr 481 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
26 chordthmALT.ABcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
27 chordthmALT.ADcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
2826, 27eqtr3d 2773 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐵𝑄)) = (abs‘(𝐷𝑄)))
2928oveq1d 7392 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐵𝑄))↑2) = ((abs‘(𝐷𝑄))↑2))
3029oveq1d 7392 . . . . . . . . 9 (𝜑 → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
31303ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
32153ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐴 ∈ ℂ)
33163ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐵 ∈ ℂ)
34 chordthmALT.Q . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℂ)
35343ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑄 ∈ ℂ)
36 ioossicc 13375 . . . . . . . . . . . . 13 (0(,)1) ⊆ (0[,]1)
37 id 22 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0(,)1))
3836, 37sselid 3960 . . . . . . . . . . . 12 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0[,]1))
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑤 ∈ (0[,]1))
40 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
41403ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
42263ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
4332, 33, 35, 39, 41, 42chordthmlem5 26238 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
44433expb 1120 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
45443adant2 1131 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
4633ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐶 ∈ ℂ)
4753ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐷 ∈ ℂ)
48343ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑄 ∈ ℂ)
49 id 22 . . . . . . . . . . . . 13 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0(,)1))
5036, 49sselid 3960 . . . . . . . . . . . 12 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0[,]1))
51503ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑣 ∈ (0[,]1))
52 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
53523ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
54 chordthmALT.ACcirc . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
5554, 27eqtr3d 2773 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
56553ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
5746, 47, 48, 51, 53, 56chordthmlem5 26238 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
58573expb 1120 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
59583adant3 1132 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
6031, 45, 593eqtr4d 2781 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
61603expia 1121 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6261exlimdv 1936 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → (∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6325, 62mpd 15 . . . 4 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
6463ex 413 . . 3 (𝜑 → ((𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6564exlimdv 1936 . 2 (𝜑 → (∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6613, 65mpd 15 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2939  wrex 3069  cdif 3925  {csn 4606  cfv 6516  (class class class)co 7377  cmpo 7379  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11409   / cdiv 11836  2c2 12232  (,)cioo 13289  [,]cicc 13292  cexp 13992  cim 15010  abscabs 15146  πcpi 15975  logclog 25962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3364  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-pss 3947  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4886  df-int 4928  df-iun 4976  df-iin 4977  df-br 5126  df-opab 5188  df-mpt 5209  df-tr 5243  df-id 5551  df-eprel 5557  df-po 5565  df-so 5566  df-fr 5608  df-se 5609  df-we 5610  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-pred 6273  df-ord 6340  df-on 6341  df-lim 6342  df-suc 6343  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-isom 6525  df-riota 7333  df-ov 7380  df-oprab 7381  df-mpo 7382  df-of 7637  df-om 7823  df-1st 7941  df-2nd 7942  df-supp 8113  df-frecs 8232  df-wrecs 8263  df-recs 8337  df-rdg 8376  df-1o 8432  df-2o 8433  df-er 8670  df-map 8789  df-pm 8790  df-ixp 8858  df-en 8906  df-dom 8907  df-sdom 8908  df-fin 8909  df-fsupp 9328  df-fi 9371  df-sup 9402  df-inf 9403  df-oi 9470  df-card 9899  df-pnf 11215  df-mnf 11216  df-xr 11217  df-ltxr 11218  df-le 11219  df-sub 11411  df-neg 11412  df-div 11837  df-nn 12178  df-2 12240  df-3 12241  df-4 12242  df-5 12243  df-6 12244  df-7 12245  df-8 12246  df-9 12247  df-n0 12438  df-z 12524  df-dec 12643  df-uz 12788  df-q 12898  df-rp 12940  df-xneg 13057  df-xadd 13058  df-xmul 13059  df-ioo 13293  df-ioc 13294  df-ico 13295  df-icc 13296  df-fz 13450  df-fzo 13593  df-fl 13722  df-mod 13800  df-seq 13932  df-exp 13993  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14979  df-cj 15011  df-re 15012  df-im 15013  df-sqrt 15147  df-abs 15148  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15598  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17045  df-sets 17062  df-slot 17080  df-ndx 17092  df-base 17110  df-ress 17139  df-plusg 17175  df-mulr 17176  df-starv 17177  df-sca 17178  df-vsca 17179  df-ip 17180  df-tset 17181  df-ple 17182  df-ds 17184  df-unif 17185  df-hom 17186  df-cco 17187  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17413  df-qtop 17418  df-imas 17419  df-xps 17421  df-mre 17495  df-mrc 17496  df-acs 17498  df-mgm 18526  df-sgrp 18575  df-mnd 18586  df-submnd 18631  df-mulg 18902  df-cntz 19126  df-cmn 19593  df-psmet 20840  df-xmet 20841  df-met 20842  df-bl 20843  df-mopn 20844  df-fbas 20845  df-fg 20846  df-cnfld 20849  df-top 22295  df-topon 22312  df-topsp 22334  df-bases 22348  df-cld 22422  df-ntr 22423  df-cls 22424  df-nei 22501  df-lp 22539  df-perf 22540  df-cn 22630  df-cnp 22631  df-haus 22718  df-tx 22965  df-hmeo 23158  df-fil 23249  df-fm 23341  df-flim 23342  df-flf 23343  df-xms 23725  df-ms 23726  df-tms 23727  df-cncf 24293  df-limc 25282  df-dv 25283  df-log 25964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator