Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chordthmALT Structured version   Visualization version   GIF version

Theorem chordthmALT 43205
Description: The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26186 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26187. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26187 is a Virtual Deduction User's Proof transcription of chordthm 26187. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 43205 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
chordthmALT.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmALT.A (𝜑𝐴 ∈ ℂ)
chordthmALT.B (𝜑𝐵 ∈ ℂ)
chordthmALT.C (𝜑𝐶 ∈ ℂ)
chordthmALT.D (𝜑𝐷 ∈ ℂ)
chordthmALT.P (𝜑𝑃 ∈ ℂ)
chordthmALT.AneP (𝜑𝐴𝑃)
chordthmALT.BneP (𝜑𝐵𝑃)
chordthmALT.CneP (𝜑𝐶𝑃)
chordthmALT.DneP (𝜑𝐷𝑃)
chordthmALT.APB (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
chordthmALT.CPD (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
chordthmALT.Q (𝜑𝑄 ∈ ℂ)
chordthmALT.ABcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmALT.ACcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
chordthmALT.ADcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
Assertion
Ref Expression
chordthmALT (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem chordthmALT
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmALT.CPD . . . 4 (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
2 chordthmALT.angdef . . . . 5 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
3 chordthmALT.C . . . . 5 (𝜑𝐶 ∈ ℂ)
4 chordthmALT.P . . . . 5 (𝜑𝑃 ∈ ℂ)
5 chordthmALT.D . . . . 5 (𝜑𝐷 ∈ ℂ)
6 chordthmALT.CneP . . . . 5 (𝜑𝐶𝑃)
7 chordthmALT.DneP . . . . . 6 (𝜑𝐷𝑃)
87necomd 2999 . . . . 5 (𝜑𝑃𝐷)
92, 3, 4, 5, 6, 8angpieqvd 26181 . . . 4 (𝜑 → (((𝐶𝑃)𝐹(𝐷𝑃)) = π ↔ ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
101, 9mpbid 231 . . 3 (𝜑 → ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
11 df-rex 3074 . . . 4 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) ↔ ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1211biimpi 215 . . 3 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1310, 12syl 17 . 2 (𝜑 → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
14 chordthmALT.APB . . . . . . . 8 (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
15 chordthmALT.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
16 chordthmALT.B . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
17 chordthmALT.AneP . . . . . . . . 9 (𝜑𝐴𝑃)
18 chordthmALT.BneP . . . . . . . . . 10 (𝜑𝐵𝑃)
1918necomd 2999 . . . . . . . . 9 (𝜑𝑃𝐵)
202, 15, 4, 16, 17, 19angpieqvd 26181 . . . . . . . 8 (𝜑 → (((𝐴𝑃)𝐹(𝐵𝑃)) = π ↔ ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2114, 20mpbid 231 . . . . . . 7 (𝜑 → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
22 df-rex 3074 . . . . . . . 8 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) ↔ ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2322biimpi 215 . . . . . . 7 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2421, 23syl 17 . . . . . 6 (𝜑 → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2524adantr 481 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
26 chordthmALT.ABcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
27 chordthmALT.ADcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
2826, 27eqtr3d 2778 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐵𝑄)) = (abs‘(𝐷𝑄)))
2928oveq1d 7372 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐵𝑄))↑2) = ((abs‘(𝐷𝑄))↑2))
3029oveq1d 7372 . . . . . . . . 9 (𝜑 → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
31303ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
32153ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐴 ∈ ℂ)
33163ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐵 ∈ ℂ)
34 chordthmALT.Q . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℂ)
35343ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑄 ∈ ℂ)
36 ioossicc 13350 . . . . . . . . . . . . 13 (0(,)1) ⊆ (0[,]1)
37 id 22 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0(,)1))
3836, 37sselid 3942 . . . . . . . . . . . 12 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0[,]1))
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑤 ∈ (0[,]1))
40 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
41403ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
42263ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
4332, 33, 35, 39, 41, 42chordthmlem5 26186 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
44433expb 1120 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
45443adant2 1131 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
4633ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐶 ∈ ℂ)
4753ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐷 ∈ ℂ)
48343ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑄 ∈ ℂ)
49 id 22 . . . . . . . . . . . . 13 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0(,)1))
5036, 49sselid 3942 . . . . . . . . . . . 12 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0[,]1))
51503ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑣 ∈ (0[,]1))
52 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
53523ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
54 chordthmALT.ACcirc . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
5554, 27eqtr3d 2778 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
56553ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
5746, 47, 48, 51, 53, 56chordthmlem5 26186 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
58573expb 1120 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
59583adant3 1132 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
6031, 45, 593eqtr4d 2786 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
61603expia 1121 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6261exlimdv 1936 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → (∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6325, 62mpd 15 . . . 4 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
6463ex 413 . . 3 (𝜑 → ((𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6564exlimdv 1936 . 2 (𝜑 → (∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6613, 65mpd 15 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  cdif 3907  {csn 4586  cfv 6496  (class class class)co 7357  cmpo 7359  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  2c2 12208  (,)cioo 13264  [,]cicc 13267  cexp 13967  cim 14983  abscabs 15119  πcpi 15949  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator