Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chordthmALT Structured version   Visualization version   GIF version

Theorem chordthmALT 41260
Description: The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 25408 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 25409. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 25409 is a Virtual Deduction User's Proof transcription of chordthm 25409. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 41260 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
chordthmALT.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmALT.A (𝜑𝐴 ∈ ℂ)
chordthmALT.B (𝜑𝐵 ∈ ℂ)
chordthmALT.C (𝜑𝐶 ∈ ℂ)
chordthmALT.D (𝜑𝐷 ∈ ℂ)
chordthmALT.P (𝜑𝑃 ∈ ℂ)
chordthmALT.AneP (𝜑𝐴𝑃)
chordthmALT.BneP (𝜑𝐵𝑃)
chordthmALT.CneP (𝜑𝐶𝑃)
chordthmALT.DneP (𝜑𝐷𝑃)
chordthmALT.APB (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
chordthmALT.CPD (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
chordthmALT.Q (𝜑𝑄 ∈ ℂ)
chordthmALT.ABcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmALT.ACcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
chordthmALT.ADcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
Assertion
Ref Expression
chordthmALT (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem chordthmALT
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmALT.CPD . . . 4 (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
2 chordthmALT.angdef . . . . 5 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
3 chordthmALT.C . . . . 5 (𝜑𝐶 ∈ ℂ)
4 chordthmALT.P . . . . 5 (𝜑𝑃 ∈ ℂ)
5 chordthmALT.D . . . . 5 (𝜑𝐷 ∈ ℂ)
6 chordthmALT.CneP . . . . 5 (𝜑𝐶𝑃)
7 chordthmALT.DneP . . . . . 6 (𝜑𝐷𝑃)
87necomd 3071 . . . . 5 (𝜑𝑃𝐷)
92, 3, 4, 5, 6, 8angpieqvd 25403 . . . 4 (𝜑 → (((𝐶𝑃)𝐹(𝐷𝑃)) = π ↔ ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
101, 9mpbid 234 . . 3 (𝜑 → ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
11 df-rex 3144 . . . 4 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) ↔ ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1211biimpi 218 . . 3 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1310, 12syl 17 . 2 (𝜑 → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
14 chordthmALT.APB . . . . . . . 8 (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
15 chordthmALT.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
16 chordthmALT.B . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
17 chordthmALT.AneP . . . . . . . . 9 (𝜑𝐴𝑃)
18 chordthmALT.BneP . . . . . . . . . 10 (𝜑𝐵𝑃)
1918necomd 3071 . . . . . . . . 9 (𝜑𝑃𝐵)
202, 15, 4, 16, 17, 19angpieqvd 25403 . . . . . . . 8 (𝜑 → (((𝐴𝑃)𝐹(𝐵𝑃)) = π ↔ ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2114, 20mpbid 234 . . . . . . 7 (𝜑 → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
22 df-rex 3144 . . . . . . . 8 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) ↔ ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2322biimpi 218 . . . . . . 7 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2421, 23syl 17 . . . . . 6 (𝜑 → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2524adantr 483 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
26 chordthmALT.ABcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
27 chordthmALT.ADcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
2826, 27eqtr3d 2858 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐵𝑄)) = (abs‘(𝐷𝑄)))
2928oveq1d 7165 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐵𝑄))↑2) = ((abs‘(𝐷𝑄))↑2))
3029oveq1d 7165 . . . . . . . . 9 (𝜑 → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
31303ad2ant1 1129 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
32153ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐴 ∈ ℂ)
33163ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐵 ∈ ℂ)
34 chordthmALT.Q . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℂ)
35343ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑄 ∈ ℂ)
36 ioossicc 12816 . . . . . . . . . . . . 13 (0(,)1) ⊆ (0[,]1)
37 id 22 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0(,)1))
3836, 37sseldi 3965 . . . . . . . . . . . 12 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0[,]1))
39383ad2ant2 1130 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑤 ∈ (0[,]1))
40 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
41403ad2ant3 1131 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
42263ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
4332, 33, 35, 39, 41, 42chordthmlem5 25408 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
44433expb 1116 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
45443adant2 1127 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
4633ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐶 ∈ ℂ)
4753ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐷 ∈ ℂ)
48343ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑄 ∈ ℂ)
49 id 22 . . . . . . . . . . . . 13 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0(,)1))
5036, 49sseldi 3965 . . . . . . . . . . . 12 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0[,]1))
51503ad2ant2 1130 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑣 ∈ (0[,]1))
52 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
53523ad2ant3 1131 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
54 chordthmALT.ACcirc . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
5554, 27eqtr3d 2858 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
56553ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
5746, 47, 48, 51, 53, 56chordthmlem5 25408 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
58573expb 1116 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
59583adant3 1128 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
6031, 45, 593eqtr4d 2866 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
61603expia 1117 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6261exlimdv 1930 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → (∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6325, 62mpd 15 . . . 4 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
6463ex 415 . . 3 (𝜑 → ((𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6564exlimdv 1930 . 2 (𝜑 → (∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6613, 65mpd 15 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wrex 3139  cdif 3933  {csn 4561  cfv 6350  (class class class)co 7150  cmpo 7152  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291  2c2 11686  (,)cioo 12732  [,]cicc 12735  cexp 13423  cim 14451  abscabs 14587  πcpi 15414  logclog 25132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator