Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chordthmALT Structured version   Visualization version   GIF version

Theorem chordthmALT 43996
Description: The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26577 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26578. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26578 is a Virtual Deduction User's Proof transcription of chordthm 26578. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 43996 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
chordthmALT.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmALT.A (𝜑𝐴 ∈ ℂ)
chordthmALT.B (𝜑𝐵 ∈ ℂ)
chordthmALT.C (𝜑𝐶 ∈ ℂ)
chordthmALT.D (𝜑𝐷 ∈ ℂ)
chordthmALT.P (𝜑𝑃 ∈ ℂ)
chordthmALT.AneP (𝜑𝐴𝑃)
chordthmALT.BneP (𝜑𝐵𝑃)
chordthmALT.CneP (𝜑𝐶𝑃)
chordthmALT.DneP (𝜑𝐷𝑃)
chordthmALT.APB (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
chordthmALT.CPD (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
chordthmALT.Q (𝜑𝑄 ∈ ℂ)
chordthmALT.ABcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmALT.ACcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
chordthmALT.ADcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
Assertion
Ref Expression
chordthmALT (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem chordthmALT
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmALT.CPD . . . 4 (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
2 chordthmALT.angdef . . . . 5 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
3 chordthmALT.C . . . . 5 (𝜑𝐶 ∈ ℂ)
4 chordthmALT.P . . . . 5 (𝜑𝑃 ∈ ℂ)
5 chordthmALT.D . . . . 5 (𝜑𝐷 ∈ ℂ)
6 chordthmALT.CneP . . . . 5 (𝜑𝐶𝑃)
7 chordthmALT.DneP . . . . . 6 (𝜑𝐷𝑃)
87necomd 2994 . . . . 5 (𝜑𝑃𝐷)
92, 3, 4, 5, 6, 8angpieqvd 26572 . . . 4 (𝜑 → (((𝐶𝑃)𝐹(𝐷𝑃)) = π ↔ ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
101, 9mpbid 231 . . 3 (𝜑 → ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
11 df-rex 3069 . . . 4 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) ↔ ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1211biimpi 215 . . 3 (∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
1310, 12syl 17 . 2 (𝜑 → ∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
14 chordthmALT.APB . . . . . . . 8 (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
15 chordthmALT.A . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
16 chordthmALT.B . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
17 chordthmALT.AneP . . . . . . . . 9 (𝜑𝐴𝑃)
18 chordthmALT.BneP . . . . . . . . . 10 (𝜑𝐵𝑃)
1918necomd 2994 . . . . . . . . 9 (𝜑𝑃𝐵)
202, 15, 4, 16, 17, 19angpieqvd 26572 . . . . . . . 8 (𝜑 → (((𝐴𝑃)𝐹(𝐵𝑃)) = π ↔ ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2114, 20mpbid 231 . . . . . . 7 (𝜑 → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
22 df-rex 3069 . . . . . . . 8 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) ↔ ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2322biimpi 215 . . . . . . 7 (∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2421, 23syl 17 . . . . . 6 (𝜑 → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
2524adantr 479 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
26 chordthmALT.ABcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
27 chordthmALT.ADcirc . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
2826, 27eqtr3d 2772 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐵𝑄)) = (abs‘(𝐷𝑄)))
2928oveq1d 7426 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐵𝑄))↑2) = ((abs‘(𝐷𝑄))↑2))
3029oveq1d 7426 . . . . . . . . 9 (𝜑 → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
31303ad2ant1 1131 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
32153ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐴 ∈ ℂ)
33163ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝐵 ∈ ℂ)
34 chordthmALT.Q . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℂ)
35343ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑄 ∈ ℂ)
36 ioossicc 13414 . . . . . . . . . . . . 13 (0(,)1) ⊆ (0[,]1)
37 id 22 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0(,)1))
3836, 37sselid 3979 . . . . . . . . . . . 12 (𝑤 ∈ (0(,)1) → 𝑤 ∈ (0[,]1))
39383ad2ant2 1132 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑤 ∈ (0[,]1))
40 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
41403ad2ant3 1133 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
42263ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
4332, 33, 35, 39, 41, 42chordthmlem5 26577 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
44433expb 1118 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
45443adant2 1129 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
4633ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐶 ∈ ℂ)
4753ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝐷 ∈ ℂ)
48343ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑄 ∈ ℂ)
49 id 22 . . . . . . . . . . . . 13 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0(,)1))
5036, 49sselid 3979 . . . . . . . . . . . 12 (𝑣 ∈ (0(,)1) → 𝑣 ∈ (0[,]1))
51503ad2ant2 1132 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑣 ∈ (0[,]1))
52 id 22 . . . . . . . . . . . 12 (𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
53523ad2ant3 1133 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
54 chordthmALT.ACcirc . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
5554, 27eqtr3d 2772 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
56553ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
5746, 47, 48, 51, 53, 56chordthmlem5 26577 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
58573expb 1118 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
59583adant3 1130 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
6031, 45, 593eqtr4d 2780 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
61603expia 1119 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6261exlimdv 1934 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → (∃𝑤(𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6325, 62mpd 15 . . . 4 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
6463ex 411 . . 3 (𝜑 → ((𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6564exlimdv 1934 . 2 (𝜑 → (∃𝑣(𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷)))))
6613, 65mpd 15 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wex 1779  wcel 2104  wne 2938  wrex 3068  cdif 3944  {csn 4627  cfv 6542  (class class class)co 7411  cmpo 7413  cc 11110  0cc0 11112  1c1 11113   + caddc 11115   · cmul 11117  cmin 11448   / cdiv 11875  2c2 12271  (,)cioo 13328  [,]cicc 13331  cexp 14031  cim 15049  abscabs 15185  πcpi 16014  logclog 26299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25615  df-dv 25616  df-log 26301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator