MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi Structured version   Visualization version   GIF version

Theorem pgpfi 19467
Description: The converse to pgpfi1 19457. A finite group is a 𝑃-group iff it has size some power of 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
pgpfi.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
pgpfi ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
Distinct variable groups:   𝑛,𝐺   𝑃,𝑛   𝑛,𝑋

Proof of Theorem pgpfi
Dummy variables 𝑔 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfi.1 . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2732 . . . 4 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19454 . . 3 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)))
4 simprl 769 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℙ)
51grpbn0 18847 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
65ad2antrr 724 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ≠ ∅)
7 hashnncl 14322 . . . . . . . . . . 11 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
87ad2antlr 725 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
96, 8mpbird 256 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℕ)
104, 9pccld 16779 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
1110nn0red 12529 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
1211leidd 11776 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (♯‘𝑋)))
1310nn0zd 12580 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
14 pcid 16802 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (♯‘𝑋)))
154, 13, 14syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (♯‘𝑋)))
1612, 15breqtrrd 5175 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
1716ad2antrr 724 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
18 simpr 485 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1918oveq1d 7420 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (♯‘𝑋)) = (𝑃 pCnt (♯‘𝑋)))
2018oveq1d 7420 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
2117, 19, 203brtr4d 5179 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
22 simp-4l 781 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝐺 ∈ Grp)
23 simplr 767 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ∈ Fin)
2423ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑋 ∈ Fin)
25 simplr 767 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 ∈ ℙ)
26 simpr 485 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 ∥ (♯‘𝑋))
271, 2odcau 19466 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2822, 24, 25, 26, 27syl31anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2925adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℙ)
30 prmz 16608 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
31 iddvds 16209 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℤ → 𝑝𝑝)
3229, 30, 313syl 18 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝𝑝)
33 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = 𝑝)
3432, 33breqtrrd 5175 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ ((od‘𝐺)‘𝑔))
35 simplrr 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))
36 fveqeq2 6897 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑔 → (((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3736rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑔 → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3837rspccva 3611 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
3935, 38sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
4039ad2ant2r 745 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
414ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑃 ∈ ℙ)
42 prmnn 16607 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4329, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℕ)
4433, 43eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) ∈ ℕ)
45 pcprmpw 16812 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑔) ∈ ℕ) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4641, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4740, 46mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
4834, 47breqtrd 5173 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
4941, 44pccld 16779 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0)
50 prmdvdsexpr 16650 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5129, 41, 49, 50syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5248, 51mpd 15 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 = 𝑃)
5328, 52rexlimddv 3161 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 = 𝑃)
5453ex 413 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (♯‘𝑋) → 𝑝 = 𝑃))
5554necon3ad 2953 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝 ∥ (♯‘𝑋)))
5655imp 407 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝 ∥ (♯‘𝑋))
57 simplr 767 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
589ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (♯‘𝑋) ∈ ℕ)
59 pceq0 16800 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → ((𝑝 pCnt (♯‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (♯‘𝑋)))
6057, 58, 59syl2anc 584 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt (♯‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (♯‘𝑋)))
6156, 60mpbird 256 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (♯‘𝑋)) = 0)
62 prmnn 16607 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6362ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℕ)
6463, 10nnexpcld 14204 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℕ)
6564ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℕ)
6657, 65pccld 16779 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∈ ℕ0)
6766nn0ge0d 12531 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
6861, 67eqbrtrd 5169 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
6921, 68pm2.61dane 3029 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
7069ralrimiva 3146 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
71 hashcl 14312 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
7271ad2antlr 725 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℕ0)
7372nn0zd 12580 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℤ)
7464nnzd 12581 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℤ)
75 pc2dvds 16808 . . . . . . . . . 10 (((♯‘𝑋) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℤ) → ((♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
7673, 74, 75syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
7770, 76mpbird 256 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))))
78 oveq2 7413 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7978breq2d 5159 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → ((♯‘𝑋) ∥ (𝑃𝑛) ↔ (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8079rspcev 3612 . . . . . . . 8 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛))
8110, 77, 80syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛))
82 pcprmpw2 16811 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
83 pcprmpw 16812 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8482, 83bitr4d 281 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
854, 9, 84syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
8681, 85mpbid 231 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))
874, 86jca 512 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
88873adantr2 1170 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
8988ex 413 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
903, 89biimtrid 241 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
911pgpfi1 19457 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → ((♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
92913expia 1121 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → ((♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺)))
9392rexlimdv 3153 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
9493expimpd 454 . . 3 (𝐺 ∈ Grp → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9594adantr 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9690, 95impbid 211 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  c0 4321   class class class wbr 5147  cfv 6540  (class class class)co 7405  Fincfn 8935  0cc0 11106  cle 11245  cn 12208  0cn0 12468  cz 12554  cexp 14023  chash 14286  cdvds 16193  cprime 16604   pCnt cpc 16765  Basecbs 17140  Grpcgrp 18815  odcod 19386   pGrp cpgp 19388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-eqg 18999  df-ga 19148  df-od 19390  df-pgp 19392
This theorem is referenced by:  pgpfi2  19468  sylow2alem2  19480  slwhash  19486  fislw  19487
  Copyright terms: Public domain W3C validator