MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi Structured version   Visualization version   GIF version

Theorem pgpfi 19125
Description: The converse to pgpfi1 19115. A finite group is a 𝑃-group iff it has size some power of 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
pgpfi.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
pgpfi ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
Distinct variable groups:   𝑛,𝐺   𝑃,𝑛   𝑛,𝑋

Proof of Theorem pgpfi
Dummy variables 𝑔 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfi.1 . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2738 . . . 4 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19112 . . 3 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)))
4 simprl 767 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℙ)
51grpbn0 18523 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
65ad2antrr 722 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ≠ ∅)
7 hashnncl 14009 . . . . . . . . . . 11 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
87ad2antlr 723 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
96, 8mpbird 256 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℕ)
104, 9pccld 16479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
1110nn0red 12224 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
1211leidd 11471 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (♯‘𝑋)))
1310nn0zd 12353 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
14 pcid 16502 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (♯‘𝑋)))
154, 13, 14syl2anc 583 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (♯‘𝑋)))
1612, 15breqtrrd 5098 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
1716ad2antrr 722 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
18 simpr 484 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1918oveq1d 7270 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (♯‘𝑋)) = (𝑃 pCnt (♯‘𝑋)))
2018oveq1d 7270 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
2117, 19, 203brtr4d 5102 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
22 simp-4l 779 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝐺 ∈ Grp)
23 simplr 765 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ∈ Fin)
2423ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑋 ∈ Fin)
25 simplr 765 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 ∈ ℙ)
26 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 ∥ (♯‘𝑋))
271, 2odcau 19124 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2822, 24, 25, 26, 27syl31anc 1371 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2925adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℙ)
30 prmz 16308 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
31 iddvds 15907 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℤ → 𝑝𝑝)
3229, 30, 313syl 18 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝𝑝)
33 simprr 769 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = 𝑝)
3432, 33breqtrrd 5098 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ ((od‘𝐺)‘𝑔))
35 simplrr 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))
36 fveqeq2 6765 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑔 → (((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3736rexbidv 3225 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑔 → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3837rspccva 3551 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
3935, 38sylan 579 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
4039ad2ant2r 743 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
414ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑃 ∈ ℙ)
42 prmnn 16307 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4329, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℕ)
4433, 43eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) ∈ ℕ)
45 pcprmpw 16512 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑔) ∈ ℕ) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4641, 44, 45syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4740, 46mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
4834, 47breqtrd 5096 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
4941, 44pccld 16479 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0)
50 prmdvdsexpr 16350 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5129, 41, 49, 50syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5248, 51mpd 15 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 = 𝑃)
5328, 52rexlimddv 3219 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 = 𝑃)
5453ex 412 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (♯‘𝑋) → 𝑝 = 𝑃))
5554necon3ad 2955 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝 ∥ (♯‘𝑋)))
5655imp 406 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝 ∥ (♯‘𝑋))
57 simplr 765 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
589ad2antrr 722 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (♯‘𝑋) ∈ ℕ)
59 pceq0 16500 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → ((𝑝 pCnt (♯‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (♯‘𝑋)))
6057, 58, 59syl2anc 583 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt (♯‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (♯‘𝑋)))
6156, 60mpbird 256 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (♯‘𝑋)) = 0)
62 prmnn 16307 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6362ad2antrl 724 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℕ)
6463, 10nnexpcld 13888 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℕ)
6564ad2antrr 722 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℕ)
6657, 65pccld 16479 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∈ ℕ0)
6766nn0ge0d 12226 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
6861, 67eqbrtrd 5092 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
6921, 68pm2.61dane 3031 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
7069ralrimiva 3107 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
71 hashcl 13999 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
7271ad2antlr 723 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℕ0)
7372nn0zd 12353 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℤ)
7464nnzd 12354 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℤ)
75 pc2dvds 16508 . . . . . . . . . 10 (((♯‘𝑋) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℤ) → ((♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
7673, 74, 75syl2anc 583 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
7770, 76mpbird 256 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))))
78 oveq2 7263 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7978breq2d 5082 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → ((♯‘𝑋) ∥ (𝑃𝑛) ↔ (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8079rspcev 3552 . . . . . . . 8 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛))
8110, 77, 80syl2anc 583 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛))
82 pcprmpw2 16511 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
83 pcprmpw 16512 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8482, 83bitr4d 281 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
854, 9, 84syl2anc 583 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
8681, 85mpbid 231 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))
874, 86jca 511 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
88873adantr2 1168 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
8988ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
903, 89syl5bi 241 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
911pgpfi1 19115 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → ((♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
92913expia 1119 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → ((♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺)))
9392rexlimdv 3211 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
9493expimpd 453 . . 3 (𝐺 ∈ Grp → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9594adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9690, 95impbid 211 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  cle 10941  cn 11903  0cn0 12163  cz 12249  cexp 13710  chash 13972  cdvds 15891  cprime 16304   pCnt cpc 16465  Basecbs 16840  Grpcgrp 18492  odcod 19047   pGrp cpgp 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-eqg 18669  df-ga 18811  df-od 19051  df-pgp 19053
This theorem is referenced by:  pgpfi2  19126  sylow2alem2  19138  slwhash  19144  fislw  19145
  Copyright terms: Public domain W3C validator