MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi Structured version   Visualization version   GIF version

Theorem pgpfi 19502
Description: The converse to pgpfi1 19492. A finite group is a 𝑃-group iff it has size some power of 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
pgpfi.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
pgpfi ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
Distinct variable groups:   𝑛,𝐺   𝑃,𝑛   𝑛,𝑋

Proof of Theorem pgpfi
Dummy variables 𝑔 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfi.1 . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2729 . . . 4 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 19489 . . 3 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)))
4 simprl 770 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℙ)
51grpbn0 18863 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
65ad2antrr 726 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ≠ ∅)
7 hashnncl 14291 . . . . . . . . . . 11 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
87ad2antlr 727 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
96, 8mpbird 257 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℕ)
104, 9pccld 16780 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
1110nn0red 12464 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
1211leidd 11704 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (♯‘𝑋)))
1310nn0zd 12515 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
14 pcid 16803 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (♯‘𝑋)))
154, 13, 14syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (♯‘𝑋)))
1612, 15breqtrrd 5123 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
1716ad2antrr 726 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt (♯‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
18 simpr 484 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1918oveq1d 7368 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (♯‘𝑋)) = (𝑃 pCnt (♯‘𝑋)))
2018oveq1d 7368 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
2117, 19, 203brtr4d 5127 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
22 simp-4l 782 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝐺 ∈ Grp)
23 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ∈ Fin)
2423ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑋 ∈ Fin)
25 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 ∈ ℙ)
26 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 ∥ (♯‘𝑋))
271, 2odcau 19501 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2822, 24, 25, 26, 27syl31anc 1375 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2925adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℙ)
30 prmz 16604 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
31 iddvds 16198 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℤ → 𝑝𝑝)
3229, 30, 313syl 18 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝𝑝)
33 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = 𝑝)
3432, 33breqtrrd 5123 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ ((od‘𝐺)‘𝑔))
35 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))
36 fveqeq2 6835 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑔 → (((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3736rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑔 → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3837rspccva 3578 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
3935, 38sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
4039ad2ant2r 747 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
414ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑃 ∈ ℙ)
42 prmnn 16603 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4329, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℕ)
4433, 43eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) ∈ ℕ)
45 pcprmpw 16813 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑔) ∈ ℕ) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4641, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4740, 46mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
4834, 47breqtrd 5121 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
4941, 44pccld 16780 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0)
50 prmdvdsexpr 16646 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5129, 41, 49, 50syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5248, 51mpd 15 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 = 𝑃)
5328, 52rexlimddv 3136 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝑋)) → 𝑝 = 𝑃)
5453ex 412 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (♯‘𝑋) → 𝑝 = 𝑃))
5554necon3ad 2938 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝 ∥ (♯‘𝑋)))
5655imp 406 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝 ∥ (♯‘𝑋))
57 simplr 768 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
589ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (♯‘𝑋) ∈ ℕ)
59 pceq0 16801 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → ((𝑝 pCnt (♯‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (♯‘𝑋)))
6057, 58, 59syl2anc 584 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt (♯‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (♯‘𝑋)))
6156, 60mpbird 257 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (♯‘𝑋)) = 0)
62 prmnn 16603 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6362ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℕ)
6463, 10nnexpcld 14170 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℕ)
6564ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℕ)
6657, 65pccld 16780 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∈ ℕ0)
6766nn0ge0d 12466 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
6861, 67eqbrtrd 5117 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
6921, 68pm2.61dane 3012 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
7069ralrimiva 3121 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
71 hashcl 14281 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
7271ad2antlr 727 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℕ0)
7372nn0zd 12515 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∈ ℤ)
7464nnzd 12516 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℤ)
75 pc2dvds 16809 . . . . . . . . . 10 (((♯‘𝑋) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∈ ℤ) → ((♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
7673, 74, 75syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
7770, 76mpbird 257 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋))))
78 oveq2 7361 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7978breq2d 5107 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → ((♯‘𝑋) ∥ (𝑃𝑛) ↔ (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8079rspcev 3579 . . . . . . . 8 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘𝑋) ∥ (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛))
8110, 77, 80syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛))
82 pcprmpw2 16812 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
83 pcprmpw 16813 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8482, 83bitr4d 282 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
854, 9, 84syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
8681, 85mpbid 232 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))
874, 86jca 511 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
88873adantr2 1171 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
8988ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
903, 89biimtrid 242 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
911pgpfi1 19492 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → ((♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
92913expia 1121 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → ((♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺)))
9392rexlimdv 3128 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
9493expimpd 453 . . 3 (𝐺 ∈ Grp → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9594adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9690, 95impbid 212 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  cle 11169  cn 12146  0cn0 12402  cz 12489  cexp 13986  chash 14255  cdvds 16181  cprime 16600   pCnt cpc 16766  Basecbs 17138  Grpcgrp 18830  odcod 19421   pGrp cpgp 19423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-eqg 19022  df-ga 19187  df-od 19425  df-pgp 19427
This theorem is referenced by:  pgpfi2  19503  sylow2alem2  19515  slwhash  19521  fislw  19522
  Copyright terms: Public domain W3C validator