Step | Hyp | Ref
| Expression |
1 | | eqidd 2800 |
. 2
⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) |
2 | | eqidd 2800 |
. 2
⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) |
3 | | prdslmodd.y |
. . 3
⊢ 𝑌 = (𝑆Xs𝑅) |
4 | | prdslmodd.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ Ring) |
5 | | prdslmodd.rm |
. . . 4
⊢ (𝜑 → 𝑅:𝐼⟶LMod) |
6 | | prdslmodd.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
7 | | fex 6718 |
. . . 4
⊢ ((𝑅:𝐼⟶LMod ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) |
8 | 5, 6, 7 | syl2anc 580 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
9 | 3, 4, 8 | prdssca 16431 |
. 2
⊢ (𝜑 → 𝑆 = (Scalar‘𝑌)) |
10 | | eqidd 2800 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝑌) = ( ·𝑠
‘𝑌)) |
11 | | eqidd 2800 |
. 2
⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) |
12 | | eqidd 2800 |
. 2
⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑆)) |
13 | | eqidd 2800 |
. 2
⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑆)) |
14 | | eqidd 2800 |
. 2
⊢ (𝜑 → (1r‘𝑆) = (1r‘𝑆)) |
15 | | lmodgrp 19188 |
. . . . 5
⊢ (𝑎 ∈ LMod → 𝑎 ∈ Grp) |
16 | 15 | ssriv 3802 |
. . . 4
⊢ LMod
⊆ Grp |
17 | | fss 6269 |
. . . 4
⊢ ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) →
𝑅:𝐼⟶Grp) |
18 | 5, 16, 17 | sylancl 581 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
19 | 3, 6, 4, 18 | prdsgrpd 17841 |
. 2
⊢ (𝜑 → 𝑌 ∈ Grp) |
20 | | eqid 2799 |
. . . 4
⊢
(Base‘𝑌) =
(Base‘𝑌) |
21 | | eqid 2799 |
. . . 4
⊢ (
·𝑠 ‘𝑌) = ( ·𝑠
‘𝑌) |
22 | | eqid 2799 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
23 | 4 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring) |
24 | | elex 3400 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) |
25 | 6, 24 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ V) |
26 | 25 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝐼 ∈ V) |
27 | 5 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod) |
28 | | simprl 788 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆)) |
29 | | simprr 790 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌)) |
30 | | prdslmodd.rs |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (Scalar‘(𝑅‘𝑦)) = 𝑆) |
31 | 30 | adantlr 707 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (Scalar‘(𝑅‘𝑦)) = 𝑆) |
32 | 3, 20, 21, 22, 23, 26, 27, 28, 29, 31 | prdsvscacl 19289 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)𝑏) ∈ (Base‘𝑌)) |
33 | 32 | 3impb 1144 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎( ·𝑠
‘𝑌)𝑏) ∈ (Base‘𝑌)) |
34 | 5 | ffvelrnda 6585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ LMod) |
35 | 34 | adantlr 707 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ LMod) |
36 | | simplr1 1276 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑆)) |
37 | 30 | fveq2d 6415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑦))) = (Base‘𝑆)) |
38 | 37 | adantlr 707 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑦))) = (Base‘𝑆)) |
39 | 36, 38 | eleqtrrd 2881 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅‘𝑦)))) |
40 | 4 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ Ring) |
41 | 25 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ V) |
42 | 5 | ffnd 6257 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
43 | 42 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
44 | | simplr2 1278 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑌)) |
45 | | simpr 478 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
46 | 3, 20, 40, 41, 43, 44, 45 | prdsbasprj 16447 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑏‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
47 | | simplr3 1280 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑐 ∈ (Base‘𝑌)) |
48 | 3, 20, 40, 41, 43, 47, 45 | prdsbasprj 16447 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑐‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
49 | | eqid 2799 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
50 | | eqid 2799 |
. . . . . . 7
⊢
(+g‘(𝑅‘𝑦)) = (+g‘(𝑅‘𝑦)) |
51 | | eqid 2799 |
. . . . . . 7
⊢
(Scalar‘(𝑅‘𝑦)) = (Scalar‘(𝑅‘𝑦)) |
52 | | eqid 2799 |
. . . . . . 7
⊢ (
·𝑠 ‘(𝑅‘𝑦)) = ( ·𝑠
‘(𝑅‘𝑦)) |
53 | | eqid 2799 |
. . . . . . 7
⊢
(Base‘(Scalar‘(𝑅‘𝑦))) = (Base‘(Scalar‘(𝑅‘𝑦))) |
54 | 49, 50, 51, 52, 53 | lmodvsdi 19204 |
. . . . . 6
⊢ (((𝑅‘𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅‘𝑦))) ∧ (𝑏‘𝑦) ∈ (Base‘(𝑅‘𝑦)) ∧ (𝑐‘𝑦) ∈ (Base‘(𝑅‘𝑦)))) → (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦))) = ((𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑏‘𝑦))(+g‘(𝑅‘𝑦))(𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
55 | 35, 39, 46, 48, 54 | syl13anc 1492 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦))) = ((𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑏‘𝑦))(+g‘(𝑅‘𝑦))(𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
56 | | eqid 2799 |
. . . . . . 7
⊢
(+g‘𝑌) = (+g‘𝑌) |
57 | 3, 20, 40, 41, 43, 44, 47, 56, 45 | prdsplusgfval 16449 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑏(+g‘𝑌)𝑐)‘𝑦) = ((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦))) |
58 | 57 | oveq2d 6894 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦)) = (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
59 | 3, 20, 21, 22, 40, 41, 43, 36, 44, 45 | prdsvscafval 16455 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎( ·𝑠
‘𝑌)𝑏)‘𝑦) = (𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑏‘𝑦))) |
60 | 3, 20, 21, 22, 40, 41, 43, 36, 47, 45 | prdsvscafval 16455 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦) = (𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))) |
61 | 59, 60 | oveq12d 6896 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (((𝑎( ·𝑠
‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦)) = ((𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑏‘𝑦))(+g‘(𝑅‘𝑦))(𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
62 | 55, 58, 61 | 3eqtr4d 2843 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦)) = (((𝑎( ·𝑠
‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦))) |
63 | 62 | mpteq2dva 4937 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦 ∈ 𝐼 ↦ (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (((𝑎( ·𝑠
‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦)))) |
64 | 4 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring) |
65 | 25 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V) |
66 | 42 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼) |
67 | | simpr1 1249 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆)) |
68 | 19 | adantr 473 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑌 ∈ Grp) |
69 | | simpr2 1251 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌)) |
70 | | simpr3 1253 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌)) |
71 | 20, 56 | grpcl 17746 |
. . . . 5
⊢ ((𝑌 ∈ Grp ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌)) → (𝑏(+g‘𝑌)𝑐) ∈ (Base‘𝑌)) |
72 | 68, 69, 70, 71 | syl3anc 1491 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏(+g‘𝑌)𝑐) ∈ (Base‘𝑌)) |
73 | 3, 20, 21, 22, 64, 65, 66, 67, 72 | prdsvscaval 16454 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)(𝑏(+g‘𝑌)𝑐)) = (𝑦 ∈ 𝐼 ↦ (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦)))) |
74 | 32 | 3adantr3 1213 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)𝑏) ∈ (Base‘𝑌)) |
75 | 4 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring) |
76 | 25 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V) |
77 | 5 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod) |
78 | | simprl 788 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆)) |
79 | | simprr 790 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌)) |
80 | 30 | adantlr 707 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (Scalar‘(𝑅‘𝑦)) = 𝑆) |
81 | 3, 20, 21, 22, 75, 76, 77, 78, 79, 80 | prdsvscacl 19289 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)𝑐) ∈ (Base‘𝑌)) |
82 | 81 | 3adantr2 1212 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)𝑐) ∈ (Base‘𝑌)) |
83 | 3, 20, 64, 65, 66, 74, 82, 56 | prdsplusgval 16448 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎( ·𝑠
‘𝑌)𝑏)(+g‘𝑌)(𝑎( ·𝑠
‘𝑌)𝑐)) = (𝑦 ∈ 𝐼 ↦ (((𝑎( ·𝑠
‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦)))) |
84 | 63, 73, 83 | 3eqtr4d 2843 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)(𝑏(+g‘𝑌)𝑐)) = ((𝑎( ·𝑠
‘𝑌)𝑏)(+g‘𝑌)(𝑎( ·𝑠
‘𝑌)𝑐))) |
85 | 4 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ Ring) |
86 | 25 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ V) |
87 | 42 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
88 | | simplr1 1276 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑆)) |
89 | | simplr3 1280 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑐 ∈ (Base‘𝑌)) |
90 | | simpr 478 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
91 | 3, 20, 21, 22, 85, 86, 87, 88, 89, 90 | prdsvscafval 16455 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦) = (𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))) |
92 | | simplr2 1278 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑆)) |
93 | 3, 20, 21, 22, 85, 86, 87, 92, 89, 90 | prdsvscafval 16455 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦) = (𝑏( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))) |
94 | 91, 93 | oveq12d 6896 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦)(+g‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦)) = ((𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))(+g‘(𝑅‘𝑦))(𝑏( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
95 | 34 | adantlr 707 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ LMod) |
96 | 37 | adantlr 707 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (Base‘(Scalar‘(𝑅‘𝑦))) = (Base‘𝑆)) |
97 | 88, 96 | eleqtrrd 2881 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅‘𝑦)))) |
98 | 92, 96 | eleqtrrd 2881 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑏 ∈ (Base‘(Scalar‘(𝑅‘𝑦)))) |
99 | 3, 20, 85, 86, 87, 89, 90 | prdsbasprj 16447 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑐‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
100 | | eqid 2799 |
. . . . . . 7
⊢
(+g‘(Scalar‘(𝑅‘𝑦))) =
(+g‘(Scalar‘(𝑅‘𝑦))) |
101 | 49, 50, 51, 52, 53, 100 | lmodvsdir 19205 |
. . . . . 6
⊢ (((𝑅‘𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅‘𝑦))) ∧ 𝑏 ∈ (Base‘(Scalar‘(𝑅‘𝑦))) ∧ (𝑐‘𝑦) ∈ (Base‘(𝑅‘𝑦)))) → ((𝑎(+g‘(Scalar‘(𝑅‘𝑦)))𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = ((𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))(+g‘(𝑅‘𝑦))(𝑏( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
102 | 95, 97, 98, 99, 101 | syl13anc 1492 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎(+g‘(Scalar‘(𝑅‘𝑦)))𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = ((𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))(+g‘(𝑅‘𝑦))(𝑏( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
103 | 30 | adantlr 707 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (Scalar‘(𝑅‘𝑦)) = 𝑆) |
104 | 103 | fveq2d 6415 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) →
(+g‘(Scalar‘(𝑅‘𝑦))) = (+g‘𝑆)) |
105 | 104 | oveqd 6895 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑎(+g‘(Scalar‘(𝑅‘𝑦)))𝑏) = (𝑎(+g‘𝑆)𝑏)) |
106 | 105 | oveq1d 6893 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎(+g‘(Scalar‘(𝑅‘𝑦)))𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = ((𝑎(+g‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))) |
107 | 94, 102, 106 | 3eqtr2rd 2840 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎(+g‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = (((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦)(+g‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦))) |
108 | 107 | mpteq2dva 4937 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦 ∈ 𝐼 ↦ ((𝑎(+g‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦)(+g‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦)))) |
109 | 4 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring) |
110 | 25 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V) |
111 | 42 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼) |
112 | | simpr1 1249 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆)) |
113 | | simpr2 1251 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑆)) |
114 | | eqid 2799 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
115 | 22, 114 | ringacl 18894 |
. . . . 5
⊢ ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(+g‘𝑆)𝑏) ∈ (Base‘𝑆)) |
116 | 109, 112,
113, 115 | syl3anc 1491 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g‘𝑆)𝑏) ∈ (Base‘𝑆)) |
117 | | simpr3 1253 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌)) |
118 | 3, 20, 21, 22, 109, 110, 111, 116, 117 | prdsvscaval 16454 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g‘𝑆)𝑏)( ·𝑠
‘𝑌)𝑐) = (𝑦 ∈ 𝐼 ↦ ((𝑎(+g‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
119 | 81 | 3adantr2 1212 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)𝑐) ∈ (Base‘𝑌)) |
120 | 5 | adantr 473 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod) |
121 | 3, 20, 21, 22, 109, 110, 120, 113, 117, 103 | prdsvscacl 19289 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏( ·𝑠
‘𝑌)𝑐) ∈ (Base‘𝑌)) |
122 | 3, 20, 109, 110, 111, 119, 121, 56 | prdsplusgval 16448 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎( ·𝑠
‘𝑌)𝑐)(+g‘𝑌)(𝑏( ·𝑠
‘𝑌)𝑐)) = (𝑦 ∈ 𝐼 ↦ (((𝑎( ·𝑠
‘𝑌)𝑐)‘𝑦)(+g‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦)))) |
123 | 108, 118,
122 | 3eqtr4d 2843 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g‘𝑆)𝑏)( ·𝑠
‘𝑌)𝑐) = ((𝑎( ·𝑠
‘𝑌)𝑐)(+g‘𝑌)(𝑏( ·𝑠
‘𝑌)𝑐))) |
124 | 93 | oveq2d 6894 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦)) = (𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑏( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
125 | | eqid 2799 |
. . . . . . 7
⊢
(.r‘(Scalar‘(𝑅‘𝑦))) =
(.r‘(Scalar‘(𝑅‘𝑦))) |
126 | 49, 51, 52, 53, 125 | lmodvsass 19206 |
. . . . . 6
⊢ (((𝑅‘𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅‘𝑦))) ∧ 𝑏 ∈ (Base‘(Scalar‘(𝑅‘𝑦))) ∧ (𝑐‘𝑦) ∈ (Base‘(𝑅‘𝑦)))) → ((𝑎(.r‘(Scalar‘(𝑅‘𝑦)))𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = (𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑏( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
127 | 95, 97, 98, 99, 126 | syl13anc 1492 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎(.r‘(Scalar‘(𝑅‘𝑦)))𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = (𝑎( ·𝑠
‘(𝑅‘𝑦))(𝑏( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
128 | 103 | fveq2d 6415 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) →
(.r‘(Scalar‘(𝑅‘𝑦))) = (.r‘𝑆)) |
129 | 128 | oveqd 6895 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑎(.r‘(Scalar‘(𝑅‘𝑦)))𝑏) = (𝑎(.r‘𝑆)𝑏)) |
130 | 129 | oveq1d 6893 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎(.r‘(Scalar‘(𝑅‘𝑦)))𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = ((𝑎(.r‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))) |
131 | 124, 127,
130 | 3eqtr2rd 2840 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎(.r‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)) = (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦))) |
132 | 131 | mpteq2dva 4937 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦 ∈ 𝐼 ↦ ((𝑎(.r‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦)))) |
133 | | eqid 2799 |
. . . . . 6
⊢
(.r‘𝑆) = (.r‘𝑆) |
134 | 22, 133 | ringcl 18877 |
. . . . 5
⊢ ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(.r‘𝑆)𝑏) ∈ (Base‘𝑆)) |
135 | 109, 112,
113, 134 | syl3anc 1491 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(.r‘𝑆)𝑏) ∈ (Base‘𝑆)) |
136 | 3, 20, 21, 22, 109, 110, 111, 135, 117 | prdsvscaval 16454 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(.r‘𝑆)𝑏)( ·𝑠
‘𝑌)𝑐) = (𝑦 ∈ 𝐼 ↦ ((𝑎(.r‘𝑆)𝑏)( ·𝑠
‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
137 | 3, 20, 21, 22, 109, 110, 111, 112, 121 | prdsvscaval 16454 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠
‘𝑌)(𝑏(
·𝑠 ‘𝑌)𝑐)) = (𝑦 ∈ 𝐼 ↦ (𝑎( ·𝑠
‘(𝑅‘𝑦))((𝑏( ·𝑠
‘𝑌)𝑐)‘𝑦)))) |
138 | 132, 136,
137 | 3eqtr4d 2843 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(.r‘𝑆)𝑏)( ·𝑠
‘𝑌)𝑐) = (𝑎( ·𝑠
‘𝑌)(𝑏(
·𝑠 ‘𝑌)𝑐))) |
139 | 30 | fveq2d 6415 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) →
(1r‘(Scalar‘(𝑅‘𝑦))) = (1r‘𝑆)) |
140 | 139 | adantlr 707 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) →
(1r‘(Scalar‘(𝑅‘𝑦))) = (1r‘𝑆)) |
141 | 140 | oveq1d 6893 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) →
((1r‘(Scalar‘(𝑅‘𝑦)))( ·𝑠
‘(𝑅‘𝑦))(𝑎‘𝑦)) = ((1r‘𝑆)( ·𝑠
‘(𝑅‘𝑦))(𝑎‘𝑦))) |
142 | 34 | adantlr 707 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ LMod) |
143 | 4 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ Ring) |
144 | 25 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ V) |
145 | 42 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
146 | | simplr 786 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑌)) |
147 | | simpr 478 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
148 | 3, 20, 143, 144, 145, 146, 147 | prdsbasprj 16447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → (𝑎‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
149 | | eqid 2799 |
. . . . . . 7
⊢
(1r‘(Scalar‘(𝑅‘𝑦))) =
(1r‘(Scalar‘(𝑅‘𝑦))) |
150 | 49, 51, 52, 149 | lmodvs1 19209 |
. . . . . 6
⊢ (((𝑅‘𝑦) ∈ LMod ∧ (𝑎‘𝑦) ∈ (Base‘(𝑅‘𝑦))) →
((1r‘(Scalar‘(𝑅‘𝑦)))( ·𝑠
‘(𝑅‘𝑦))(𝑎‘𝑦)) = (𝑎‘𝑦)) |
151 | 142, 148,
150 | syl2anc 580 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) →
((1r‘(Scalar‘(𝑅‘𝑦)))( ·𝑠
‘(𝑅‘𝑦))(𝑎‘𝑦)) = (𝑎‘𝑦)) |
152 | 141, 151 | eqtr3d 2835 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) ∧ 𝑦 ∈ 𝐼) → ((1r‘𝑆)(
·𝑠 ‘(𝑅‘𝑦))(𝑎‘𝑦)) = (𝑎‘𝑦)) |
153 | 152 | mpteq2dva 4937 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → (𝑦 ∈ 𝐼 ↦ ((1r‘𝑆)(
·𝑠 ‘(𝑅‘𝑦))(𝑎‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑎‘𝑦))) |
154 | 4 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ Ring) |
155 | 25 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
156 | 42 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼) |
157 | | eqid 2799 |
. . . . . . 7
⊢
(1r‘𝑆) = (1r‘𝑆) |
158 | 22, 157 | ringidcl 18884 |
. . . . . 6
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ (Base‘𝑆)) |
159 | 4, 158 | syl 17 |
. . . . 5
⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
160 | 159 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → (1r‘𝑆) ∈ (Base‘𝑆)) |
161 | | simpr 478 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) |
162 | 3, 20, 21, 22, 154, 155, 156, 160, 161 | prdsvscaval 16454 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((1r‘𝑆)(
·𝑠 ‘𝑌)𝑎) = (𝑦 ∈ 𝐼 ↦ ((1r‘𝑆)(
·𝑠 ‘(𝑅‘𝑦))(𝑎‘𝑦)))) |
163 | 3, 20, 154, 155, 156, 161 | prdsbasfn 16446 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑎 Fn 𝐼) |
164 | | dffn5 6466 |
. . . 4
⊢ (𝑎 Fn 𝐼 ↔ 𝑎 = (𝑦 ∈ 𝐼 ↦ (𝑎‘𝑦))) |
165 | 163, 164 | sylib 210 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑎 = (𝑦 ∈ 𝐼 ↦ (𝑎‘𝑦))) |
166 | 153, 162,
165 | 3eqtr4d 2843 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((1r‘𝑆)(
·𝑠 ‘𝑌)𝑎) = 𝑎) |
167 | 1, 2, 9, 10, 11, 12, 13, 14, 4, 19, 33, 84, 123, 138, 166 | islmodd 19187 |
1
⊢ (𝜑 → 𝑌 ∈ LMod) |