MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdslmodd Structured version   Visualization version   GIF version

Theorem prdslmodd 19734
Description: The product of a family of left modules is a left module. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdslmodd.y 𝑌 = (𝑆Xs𝑅)
prdslmodd.s (𝜑𝑆 ∈ Ring)
prdslmodd.i (𝜑𝐼𝑉)
prdslmodd.rm (𝜑𝑅:𝐼⟶LMod)
prdslmodd.rs ((𝜑𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
Assertion
Ref Expression
prdslmodd (𝜑𝑌 ∈ LMod)
Distinct variable groups:   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑌
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem prdslmodd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2799 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdslmodd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdslmodd.s . . 3 (𝜑𝑆 ∈ Ring)
5 prdslmodd.rm . . . 4 (𝜑𝑅:𝐼⟶LMod)
6 prdslmodd.i . . . 4 (𝜑𝐼𝑉)
7 fex 6966 . . . 4 ((𝑅:𝐼⟶LMod ∧ 𝐼𝑉) → 𝑅 ∈ V)
85, 6, 7syl2anc 587 . . 3 (𝜑𝑅 ∈ V)
93, 4, 8prdssca 16721 . 2 (𝜑𝑆 = (Scalar‘𝑌))
10 eqidd 2799 . 2 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠𝑌))
11 eqidd 2799 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
12 eqidd 2799 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
13 eqidd 2799 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
14 eqidd 2799 . 2 (𝜑 → (1r𝑆) = (1r𝑆))
15 lmodgrp 19634 . . . . 5 (𝑎 ∈ LMod → 𝑎 ∈ Grp)
1615ssriv 3919 . . . 4 LMod ⊆ Grp
17 fss 6501 . . . 4 ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) → 𝑅:𝐼⟶Grp)
185, 16, 17sylancl 589 . . 3 (𝜑𝑅:𝐼⟶Grp)
193, 6, 4, 18prdsgrpd 18201 . 2 (𝜑𝑌 ∈ Grp)
20 eqid 2798 . . . 4 (Base‘𝑌) = (Base‘𝑌)
21 eqid 2798 . . . 4 ( ·𝑠𝑌) = ( ·𝑠𝑌)
22 eqid 2798 . . . 4 (Base‘𝑆) = (Base‘𝑆)
234adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
246elexd 3461 . . . . 5 (𝜑𝐼 ∈ V)
2524adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
265adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod)
27 simprl 770 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
28 simprr 772 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
29 prdslmodd.rs . . . . 5 ((𝜑𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
3029adantlr 714 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
313, 20, 21, 22, 23, 25, 26, 27, 28, 30prdsvscacl 19733 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑏) ∈ (Base‘𝑌))
32313impb 1112 . 2 ((𝜑𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎( ·𝑠𝑌)𝑏) ∈ (Base‘𝑌))
335ffvelrnda 6828 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ LMod)
3433adantlr 714 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ LMod)
35 simplr1 1212 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑆))
3629fveq2d 6649 . . . . . . . 8 ((𝜑𝑦𝐼) → (Base‘(Scalar‘(𝑅𝑦))) = (Base‘𝑆))
3736adantlr 714 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Base‘(Scalar‘(𝑅𝑦))) = (Base‘𝑆))
3835, 37eleqtrrd 2893 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))))
394ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑆 ∈ Ring)
4024ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝐼 ∈ V)
415ffnd 6488 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
4241ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
43 simplr2 1213 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘𝑌))
44 simpr 488 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑦𝐼)
453, 20, 39, 40, 42, 43, 44prdsbasprj 16737 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑏𝑦) ∈ (Base‘(𝑅𝑦)))
46 simplr3 1214 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑐 ∈ (Base‘𝑌))
473, 20, 39, 40, 42, 46, 44prdsbasprj 16737 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))
48 eqid 2798 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
49 eqid 2798 . . . . . . 7 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
50 eqid 2798 . . . . . . 7 (Scalar‘(𝑅𝑦)) = (Scalar‘(𝑅𝑦))
51 eqid 2798 . . . . . . 7 ( ·𝑠 ‘(𝑅𝑦)) = ( ·𝑠 ‘(𝑅𝑦))
52 eqid 2798 . . . . . . 7 (Base‘(Scalar‘(𝑅𝑦))) = (Base‘(Scalar‘(𝑅𝑦)))
5348, 49, 50, 51, 52lmodvsdi 19650 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ (𝑏𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
5434, 38, 45, 47, 53syl13anc 1369 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
55 eqid 2798 . . . . . . 7 (+g𝑌) = (+g𝑌)
563, 20, 39, 40, 42, 43, 46, 55, 44prdsplusgfval 16739 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑏(+g𝑌)𝑐)‘𝑦) = ((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)))
5756oveq2d 7151 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
583, 20, 21, 22, 39, 40, 42, 35, 43, 44prdsvscafval 16745 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎( ·𝑠𝑌)𝑏)‘𝑦) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦)))
593, 20, 21, 22, 39, 40, 42, 35, 46, 44prdsvscafval 16745 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎( ·𝑠𝑌)𝑐)‘𝑦) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
6058, 59oveq12d 7153 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
6154, 57, 603eqtr4d 2843 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)) = (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦)))
6261mpteq2dva 5125 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦))))
634adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
6424adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
6541adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
66 simpr1 1191 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
6719adantr 484 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑌 ∈ Grp)
68 simpr2 1192 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
69 simpr3 1193 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
7020, 55grpcl 18103 . . . . 5 ((𝑌 ∈ Grp ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌)) → (𝑏(+g𝑌)𝑐) ∈ (Base‘𝑌))
7167, 68, 69, 70syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏(+g𝑌)𝑐) ∈ (Base‘𝑌))
723, 20, 21, 22, 63, 64, 65, 66, 71prdsvscaval 16744 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)(𝑏(+g𝑌)𝑐)) = (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
73313adantr3 1168 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑏) ∈ (Base‘𝑌))
744adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
7524adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
765adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod)
77 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
78 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
7929adantlr 714 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
803, 20, 21, 22, 74, 75, 76, 77, 78, 79prdsvscacl 19733 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
81803adantr2 1167 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
823, 20, 63, 64, 65, 73, 81, 55prdsplusgval 16738 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎( ·𝑠𝑌)𝑏)(+g𝑌)(𝑎( ·𝑠𝑌)𝑐)) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦))))
8362, 72, 823eqtr4d 2843 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)(𝑏(+g𝑌)𝑐)) = ((𝑎( ·𝑠𝑌)𝑏)(+g𝑌)(𝑎( ·𝑠𝑌)𝑐)))
844ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑆 ∈ Ring)
8524ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝐼 ∈ V)
8641ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
87 simplr1 1212 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑆))
88 simplr3 1214 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑐 ∈ (Base‘𝑌))
89 simpr 488 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑦𝐼)
903, 20, 21, 22, 84, 85, 86, 87, 88, 89prdsvscafval 16745 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎( ·𝑠𝑌)𝑐)‘𝑦) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
91 simplr2 1213 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘𝑆))
923, 20, 21, 22, 84, 85, 86, 91, 88, 89prdsvscafval 16745 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑏( ·𝑠𝑌)𝑐)‘𝑦) = (𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
9390, 92oveq12d 7153 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))(+g‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
9433adantlr 714 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ LMod)
9536adantlr 714 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Base‘(Scalar‘(𝑅𝑦))) = (Base‘𝑆))
9687, 95eleqtrrd 2893 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))))
9791, 95eleqtrrd 2893 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘(Scalar‘(𝑅𝑦))))
983, 20, 84, 85, 86, 88, 89prdsbasprj 16737 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))
99 eqid 2798 . . . . . . 7 (+g‘(Scalar‘(𝑅𝑦))) = (+g‘(Scalar‘(𝑅𝑦)))
10048, 49, 50, 51, 52, 99lmodvsdir 19651 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ 𝑏 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → ((𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))(+g‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
10194, 96, 97, 98, 100syl13anc 1369 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))(+g‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
10229adantlr 714 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
103102fveq2d 6649 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (+g‘(Scalar‘(𝑅𝑦))) = (+g𝑆))
104103oveqd 7152 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏) = (𝑎(+g𝑆)𝑏))
105104oveq1d 7150 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
10693, 101, 1053eqtr2rd 2840 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)))
107106mpteq2dva 5125 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
1084adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
10924adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
11041adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
111 simpr1 1191 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
112 simpr2 1192 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑆))
113 eqid 2798 . . . . . 6 (+g𝑆) = (+g𝑆)
11422, 113ringacl 19324 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
115108, 111, 112, 114syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
116 simpr3 1193 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
1173, 20, 21, 22, 108, 109, 110, 115, 116prdsvscaval 16744 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑆)𝑏)( ·𝑠𝑌)𝑐) = (𝑦𝐼 ↦ ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
118803adantr2 1167 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
1195adantr 484 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod)
1203, 20, 21, 22, 108, 109, 119, 112, 116, 102prdsvscacl 19733 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
1213, 20, 108, 109, 110, 118, 120, 55prdsplusgval 16738 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎( ·𝑠𝑌)𝑐)(+g𝑌)(𝑏( ·𝑠𝑌)𝑐)) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
122107, 117, 1213eqtr4d 2843 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑆)𝑏)( ·𝑠𝑌)𝑐) = ((𝑎( ·𝑠𝑌)𝑐)(+g𝑌)(𝑏( ·𝑠𝑌)𝑐)))
12392oveq2d 7151 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
124 eqid 2798 . . . . . . 7 (.r‘(Scalar‘(𝑅𝑦))) = (.r‘(Scalar‘(𝑅𝑦)))
12548, 50, 51, 52, 124lmodvsass 19652 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ 𝑏 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → ((𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
12694, 96, 97, 98, 125syl13anc 1369 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
127102fveq2d 6649 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (.r‘(Scalar‘(𝑅𝑦))) = (.r𝑆))
128127oveqd 7152 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏) = (𝑎(.r𝑆)𝑏))
129128oveq1d 7150 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
130123, 126, 1293eqtr2rd 2840 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)))
131130mpteq2dva 5125 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))) = (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
132 eqid 2798 . . . . . 6 (.r𝑆) = (.r𝑆)
13322, 132ringcl 19307 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(.r𝑆)𝑏) ∈ (Base‘𝑆))
134108, 111, 112, 133syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(.r𝑆)𝑏) ∈ (Base‘𝑆))
1353, 20, 21, 22, 108, 109, 110, 134, 116prdsvscaval 16744 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(.r𝑆)𝑏)( ·𝑠𝑌)𝑐) = (𝑦𝐼 ↦ ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
1363, 20, 21, 22, 108, 109, 110, 111, 120prdsvscaval 16744 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)(𝑏( ·𝑠𝑌)𝑐)) = (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
137131, 135, 1363eqtr4d 2843 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(.r𝑆)𝑏)( ·𝑠𝑌)𝑐) = (𝑎( ·𝑠𝑌)(𝑏( ·𝑠𝑌)𝑐)))
13829fveq2d 6649 . . . . . . 7 ((𝜑𝑦𝐼) → (1r‘(Scalar‘(𝑅𝑦))) = (1r𝑆))
139138adantlr 714 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → (1r‘(Scalar‘(𝑅𝑦))) = (1r𝑆))
140139oveq1d 7150 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → ((1r‘(Scalar‘(𝑅𝑦)))( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)))
14133adantlr 714 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ LMod)
1424ad2antrr 725 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑆 ∈ Ring)
14324ad2antrr 725 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝐼 ∈ V)
14441ad2antrr 725 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
145 simplr 768 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑌))
146 simpr 488 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑦𝐼)
1473, 20, 142, 143, 144, 145, 146prdsbasprj 16737 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → (𝑎𝑦) ∈ (Base‘(𝑅𝑦)))
148 eqid 2798 . . . . . . 7 (1r‘(Scalar‘(𝑅𝑦))) = (1r‘(Scalar‘(𝑅𝑦)))
14948, 50, 51, 148lmodvs1 19655 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎𝑦) ∈ (Base‘(𝑅𝑦))) → ((1r‘(Scalar‘(𝑅𝑦)))( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = (𝑎𝑦))
150141, 147, 149syl2anc 587 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → ((1r‘(Scalar‘(𝑅𝑦)))( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = (𝑎𝑦))
151140, 150eqtr3d 2835 . . . 4 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = (𝑎𝑦))
152151mpteq2dva 5125 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → (𝑦𝐼 ↦ ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦))) = (𝑦𝐼 ↦ (𝑎𝑦)))
1534adantr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ Ring)
15424adantr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
15541adantr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
156 eqid 2798 . . . . . . 7 (1r𝑆) = (1r𝑆)
15722, 156ringidcl 19314 . . . . . 6 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
1584, 157syl 17 . . . . 5 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
159158adantr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → (1r𝑆) ∈ (Base‘𝑆))
160 simpr 488 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
1613, 20, 21, 22, 153, 154, 155, 159, 160prdsvscaval 16744 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((1r𝑆)( ·𝑠𝑌)𝑎) = (𝑦𝐼 ↦ ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦))))
1623, 20, 153, 154, 155, 160prdsbasfn 16736 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 Fn 𝐼)
163 dffn5 6699 . . . 4 (𝑎 Fn 𝐼𝑎 = (𝑦𝐼 ↦ (𝑎𝑦)))
164162, 163sylib 221 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 = (𝑦𝐼 ↦ (𝑎𝑦)))
165152, 161, 1643eqtr4d 2843 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((1r𝑆)( ·𝑠𝑌)𝑎) = 𝑎)
1661, 2, 9, 10, 11, 12, 13, 14, 4, 19, 32, 83, 122, 137, 165islmodd 19633 1 (𝜑𝑌 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  cmpt 5110   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  Xscprds 16711  Grpcgrp 18095  1rcur 19244  Ringcrg 19290  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629
This theorem is referenced by:  pwslmod  19735  dsmmlss  20433  dsmmlmod  20434
  Copyright terms: Public domain W3C validator