MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvqp Structured version   Visualization version   GIF version

Theorem funcnvqp 6482
Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
funcnvqp ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))

Proof of Theorem funcnvqp
StepHypRef Expression
1 funcnvpr 6480 . . . . . . 7 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
213expa 1116 . . . . . 6 (((𝐴𝑈𝐶𝑉) ∧ 𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
323ad2antr1 1186 . . . . 5 (((𝐴𝑈𝐶𝑉) ∧ (𝐵𝐷𝐵𝐹𝐵𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
43ad2ant2r 743 . . . 4 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
543adantr2 1168 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvpr 6480 . . . . . 6 ((𝐸𝑊𝐺𝑇𝐹𝐻) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
763expa 1116 . . . . 5 (((𝐸𝑊𝐺𝑇) ∧ 𝐹𝐻) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
87ad2ant2l 742 . . . 4 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
983adantr2 1168 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
10 df-rn 5591 . . . . . 6 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
11 rnpropg 6114 . . . . . 6 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
1210, 11eqtr3id 2793 . . . . 5 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
13 df-rn 5591 . . . . . 6 ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}
14 rnpropg 6114 . . . . . 6 ((𝐸𝑊𝐺𝑇) → ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
1513, 14eqtr3id 2793 . . . . 5 ((𝐸𝑊𝐺𝑇) → dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
1612, 15ineqan12d 4145 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({𝐵, 𝐷} ∩ {𝐹, 𝐻}))
17 disjpr2 4646 . . . . . . 7 (((𝐵𝐹𝐷𝐹) ∧ (𝐵𝐻𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
1817an4s 656 . . . . . 6 (((𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
19183adantl1 1164 . . . . 5 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
20193adant3 1130 . . . 4 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
2116, 20sylan9eq 2799 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅)
22 funun 6464 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
235, 9, 21, 22syl21anc 834 . 2 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
24 cnvun 6035 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
2524funeqi 6439 . 2 (Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
2623, 25sylibr 233 1 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cun 3881  cin 3882  c0 4253  {cpr 4560  cop 4564  ccnv 5579  dom cdm 5580  ran crn 5581  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420
This theorem is referenced by:  funcnvs4  14556
  Copyright terms: Public domain W3C validator