MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvqp Structured version   Visualization version   GIF version

Theorem funcnvqp 6611
Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
funcnvqp ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))

Proof of Theorem funcnvqp
StepHypRef Expression
1 funcnvpr 6609 . . . . . . 7 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
213expa 1116 . . . . . 6 (((𝐴𝑈𝐶𝑉) ∧ 𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
323ad2antr1 1186 . . . . 5 (((𝐴𝑈𝐶𝑉) ∧ (𝐵𝐷𝐵𝐹𝐵𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
43ad2ant2r 743 . . . 4 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
543adantr2 1168 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvpr 6609 . . . . . 6 ((𝐸𝑊𝐺𝑇𝐹𝐻) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
763expa 1116 . . . . 5 (((𝐸𝑊𝐺𝑇) ∧ 𝐹𝐻) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
87ad2ant2l 742 . . . 4 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
983adantr2 1168 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
10 df-rn 5686 . . . . . 6 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
11 rnpropg 6220 . . . . . 6 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
1210, 11eqtr3id 2784 . . . . 5 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
13 df-rn 5686 . . . . . 6 ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}
14 rnpropg 6220 . . . . . 6 ((𝐸𝑊𝐺𝑇) → ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
1513, 14eqtr3id 2784 . . . . 5 ((𝐸𝑊𝐺𝑇) → dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
1612, 15ineqan12d 4213 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({𝐵, 𝐷} ∩ {𝐹, 𝐻}))
17 disjpr2 4716 . . . . . . 7 (((𝐵𝐹𝐷𝐹) ∧ (𝐵𝐻𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
1817an4s 656 . . . . . 6 (((𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
19183adantl1 1164 . . . . 5 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
20193adant3 1130 . . . 4 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
2116, 20sylan9eq 2790 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅)
22 funun 6593 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
235, 9, 21, 22syl21anc 834 . 2 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
24 cnvun 6141 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
2524funeqi 6568 . 2 (Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
2623, 25sylibr 233 1 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  cun 3945  cin 3946  c0 4321  {cpr 4629  cop 4633  ccnv 5674  dom cdm 5675  ran crn 5676  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6544
This theorem is referenced by:  funcnvs4  14870
  Copyright terms: Public domain W3C validator