Proof of Theorem funcringcsetcALTV2lem9
| Step | Hyp | Ref
| Expression |
| 1 | | funcringcsetcALTV2.r |
. . . . . 6
⊢ 𝑅 = (RingCat‘𝑈) |
| 2 | | funcringcsetcALTV2.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 3 | | funcringcsetcALTV2.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ WUni) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑈 ∈ WUni) |
| 5 | | eqid 2737 |
. . . . . 6
⊢ (Hom
‘𝑅) = (Hom
‘𝑅) |
| 6 | | simpr1 1195 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 7 | | simpr2 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 8 | 1, 2, 4, 5, 6, 7 | ringchom 20652 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌)) |
| 9 | 8 | eleq2d 2827 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ↔ 𝐻 ∈ (𝑋 RingHom 𝑌))) |
| 10 | | simpr3 1197 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
| 11 | 1, 2, 4, 5, 7, 10 | ringchom 20652 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌(Hom ‘𝑅)𝑍) = (𝑌 RingHom 𝑍)) |
| 12 | 11 | eleq2d 2827 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍) ↔ 𝐾 ∈ (𝑌 RingHom 𝑍))) |
| 13 | 9, 12 | anbi12d 632 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) ↔ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)))) |
| 14 | | rhmco 20501 |
. . . . . . . 8
⊢ ((𝐾 ∈ (𝑌 RingHom 𝑍) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍)) |
| 15 | 14 | ancoms 458 |
. . . . . . 7
⊢ ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → (𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍)) |
| 16 | 15 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍)) |
| 17 | | fvresi 7193 |
. . . . . 6
⊢ ((𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
| 19 | | funcringcsetcALTV2.s |
. . . . . . . . 9
⊢ 𝑆 = (SetCat‘𝑈) |
| 20 | | funcringcsetcALTV2.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝑆) |
| 21 | | funcringcsetcALTV2.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| 22 | | funcringcsetcALTV2.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
| 23 | 1, 19, 2, 20, 3, 21, 22 | funcringcsetcALTV2lem5 48210 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍))) |
| 24 | 23 | 3adantr2 1171 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍))) |
| 25 | 24 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍))) |
| 26 | 4 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑈 ∈ WUni) |
| 27 | | eqid 2737 |
. . . . . . 7
⊢
(comp‘𝑅) =
(comp‘𝑅) |
| 28 | 1, 2, 3 | ringcbas 20650 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 29 | | inss1 4237 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∩ Ring) ⊆ 𝑈 |
| 30 | 28, 29 | eqsstrdi 4028 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 31 | 30 | sseld 3982 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈)) |
| 32 | 31 | com12 32 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 → (𝜑 → 𝑋 ∈ 𝑈)) |
| 33 | 32 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑋 ∈ 𝑈)) |
| 34 | 33 | impcom 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝑈) |
| 35 | 34 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑋 ∈ 𝑈) |
| 36 | 30 | sseld 3982 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌 ∈ 𝐵 → 𝑌 ∈ 𝑈)) |
| 37 | 36 | com12 32 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝐵 → (𝜑 → 𝑌 ∈ 𝑈)) |
| 38 | 37 | 3ad2ant2 1135 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑌 ∈ 𝑈)) |
| 39 | 38 | impcom 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝑈) |
| 40 | 39 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑌 ∈ 𝑈) |
| 41 | 30 | sseld 3982 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍 ∈ 𝐵 → 𝑍 ∈ 𝑈)) |
| 42 | 41 | com12 32 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝐵 → (𝜑 → 𝑍 ∈ 𝑈)) |
| 43 | 42 | 3ad2ant3 1136 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑍 ∈ 𝑈)) |
| 44 | 43 | impcom 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝑈) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑍 ∈ 𝑈) |
| 46 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑋) =
(Base‘𝑋) |
| 47 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 48 | 46, 47 | rhmf 20485 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑋 RingHom 𝑌) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
| 49 | 48 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
| 50 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑍) =
(Base‘𝑍) |
| 51 | 47, 50 | rhmf 20485 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑌 RingHom 𝑍) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
| 52 | 51 | ad2antll 729 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
| 53 | 1, 26, 27, 35, 40, 45, 49, 52 | ringcco 20656 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻) = (𝐾 ∘ 𝐻)) |
| 54 | 25, 53 | fveq12d 6913 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾 ∘ 𝐻))) |
| 55 | | eqid 2737 |
. . . . . . 7
⊢
(comp‘𝑆) =
(comp‘𝑆) |
| 56 | 1, 19, 2, 20, 3, 21 | funcringcsetcALTV2lem2 48207 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) |
| 57 | 56 | 3ad2antr1 1189 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) ∈ 𝑈) |
| 58 | 57 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹‘𝑋) ∈ 𝑈) |
| 59 | 1, 19, 2, 20, 3, 21 | funcringcsetcALTV2lem2 48207 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ 𝑈) |
| 60 | 59 | 3ad2antr2 1190 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) ∈ 𝑈) |
| 61 | 60 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹‘𝑌) ∈ 𝑈) |
| 62 | 1, 19, 2, 20, 3, 21 | funcringcsetcALTV2lem2 48207 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) ∈ 𝑈) |
| 63 | 62 | 3ad2antr3 1191 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) ∈ 𝑈) |
| 64 | 63 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹‘𝑍) ∈ 𝑈) |
| 65 | 1, 19, 2, 20, 3, 21 | funcringcsetcALTV2lem1 48206 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| 66 | 65 | 3ad2antr1 1189 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) = (Base‘𝑋)) |
| 67 | 1, 19, 2, 20, 3, 21 | funcringcsetcALTV2lem1 48206 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) = (Base‘𝑌)) |
| 68 | 67 | 3ad2antr2 1190 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) = (Base‘𝑌)) |
| 69 | 66, 68 | feq23d 6731 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
| 70 | 69 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
| 71 | 49, 70 | mpbird 257 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
| 72 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝜑) |
| 73 | | 3simpa 1149 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 74 | 73 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 75 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻 ∈ (𝑋 RingHom 𝑌)) |
| 76 | 1, 19, 2, 20, 3, 21, 22 | funcringcsetcALTV2lem6 48211 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
| 77 | 72, 74, 75, 76 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
| 78 | 77 | feq1d 6720 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌))) |
| 79 | 71, 78 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
| 80 | 1, 19, 2, 20, 3, 21 | funcringcsetcALTV2lem1 48206 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) = (Base‘𝑍)) |
| 81 | 80 | 3ad2antr3 1191 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) = (Base‘𝑍)) |
| 82 | 68, 81 | feq23d 6731 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
| 83 | 82 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
| 84 | 52, 83 | mpbird 257 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
| 85 | | 3simpc 1151 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
| 86 | 85 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
| 87 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾 ∈ (𝑌 RingHom 𝑍)) |
| 88 | 1, 19, 2, 20, 3, 21, 22 | funcringcsetcALTV2lem6 48211 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
| 89 | 72, 86, 87, 88 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
| 90 | 89 | feq1d 6720 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍))) |
| 91 | 84, 90 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
| 92 | 19, 26, 55, 58, 61, 64, 79, 91 | setcco 18128 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻))) |
| 93 | 89, 77 | coeq12d 5875 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
| 94 | 92, 93 | eqtrd 2777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
| 95 | 18, 54, 94 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |
| 96 | 95 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
| 97 | 13, 96 | sylbid 240 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
| 98 | 97 | 3impia 1118 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |