Proof of Theorem funcestrcsetclem9
Step | Hyp | Ref
| Expression |
1 | | funcestrcsetc.e |
. . . . . 6
⊢ 𝐸 = (ExtStrCat‘𝑈) |
2 | | funcestrcsetc.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ WUni) |
3 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑈 ∈ WUni) |
4 | | eqid 2733 |
. . . . . 6
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
5 | | funcestrcsetc.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐸) |
6 | 1, 2 | estrcbas 17869 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
7 | 5, 6 | eqtr4id 2792 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = 𝑈) |
8 | 7 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈)) |
9 | 8 | biimpcd 248 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (𝜑 → 𝑋 ∈ 𝑈)) |
10 | 9 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑋 ∈ 𝑈)) |
11 | 10 | impcom 407 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝑈) |
12 | 7 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ 𝑈)) |
13 | 12 | biimpcd 248 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐵 → (𝜑 → 𝑌 ∈ 𝑈)) |
14 | 13 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑌 ∈ 𝑈)) |
15 | 14 | impcom 407 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝑈) |
16 | | eqid 2733 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
17 | | eqid 2733 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
18 | 1, 3, 4, 11, 15, 16, 17 | estrchom 17871 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑m (Base‘𝑋))) |
19 | 18 | eleq2d 2819 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ↔ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))) |
20 | 7 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 ∈ 𝐵 ↔ 𝑍 ∈ 𝑈)) |
21 | 20 | biimpcd 248 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝐵 → (𝜑 → 𝑍 ∈ 𝑈)) |
22 | 21 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑍 ∈ 𝑈)) |
23 | 22 | impcom 407 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝑈) |
24 | | eqid 2733 |
. . . . . 6
⊢
(Base‘𝑍) =
(Base‘𝑍) |
25 | 1, 3, 4, 15, 23, 17, 24 | estrchom 17871 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌(Hom ‘𝐸)𝑍) = ((Base‘𝑍) ↑m (Base‘𝑌))) |
26 | 25 | eleq2d 2819 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍) ↔ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) |
27 | 19, 26 | anbi12d 630 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) ↔ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))))) |
28 | | elmapi 8657 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ((Base‘𝑍) ↑m
(Base‘𝑌)) →
𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
29 | | elmapi 8657 |
. . . . . . . . . 10
⊢ (𝐻 ∈ ((Base‘𝑌) ↑m
(Base‘𝑋)) →
𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
30 | | fco 6642 |
. . . . . . . . . 10
⊢ ((𝐾:(Base‘𝑌)⟶(Base‘𝑍) ∧ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) → (𝐾 ∘ 𝐻):(Base‘𝑋)⟶(Base‘𝑍)) |
31 | 28, 29, 30 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ((Base‘𝑍) ↑m
(Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m
(Base‘𝑋))) →
(𝐾 ∘ 𝐻):(Base‘𝑋)⟶(Base‘𝑍)) |
32 | | fvex 6805 |
. . . . . . . . . 10
⊢
(Base‘𝑍)
∈ V |
33 | | fvex 6805 |
. . . . . . . . . 10
⊢
(Base‘𝑋)
∈ V |
34 | 32, 33 | elmap 8679 |
. . . . . . . . 9
⊢ ((𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) ↔ (𝐾 ∘ 𝐻):(Base‘𝑋)⟶(Base‘𝑍)) |
35 | 31, 34 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐾 ∈ ((Base‘𝑍) ↑m
(Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m
(Base‘𝑋))) →
(𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑m
(Base‘𝑋))) |
36 | 35 | ancoms 458 |
. . . . . . 7
⊢ ((𝐻 ∈ ((Base‘𝑌) ↑m
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m
(Base‘𝑌))) →
(𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑m
(Base‘𝑋))) |
37 | 36 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋))) |
38 | | fvresi 7065 |
. . . . . 6
⊢ ((𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) → (( I ↾
((Base‘𝑍)
↑m (Base‘𝑋)))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
39 | 37, 38 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (( I ↾
((Base‘𝑍)
↑m (Base‘𝑋)))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
40 | | funcestrcsetc.s |
. . . . . . . . 9
⊢ 𝑆 = (SetCat‘𝑈) |
41 | | funcestrcsetc.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝑆) |
42 | | funcestrcsetc.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
43 | | funcestrcsetc.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m
(Base‘𝑥))))) |
44 | 1, 40, 5, 41, 2, 42, 43, 16, 24 | funcestrcsetclem5 17889 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m
(Base‘𝑋)))) |
45 | 44 | 3adantr2 1168 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m
(Base‘𝑋)))) |
46 | 45 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m
(Base‘𝑋)))) |
47 | 3 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑈 ∈ WUni) |
48 | | eqid 2733 |
. . . . . . 7
⊢
(comp‘𝐸) =
(comp‘𝐸) |
49 | 11 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑋 ∈ 𝑈) |
50 | 15 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑌 ∈ 𝑈) |
51 | 23 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑍 ∈ 𝑈) |
52 | 29 | ad2antrl 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
53 | 28 | ad2antll 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
54 | 1, 47, 48, 49, 50, 51, 16, 17, 24, 52, 53 | estrcco 17874 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻) = (𝐾 ∘ 𝐻)) |
55 | 46, 54 | fveq12d 6799 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (( I ↾ ((Base‘𝑍) ↑m
(Base‘𝑋)))‘(𝐾 ∘ 𝐻))) |
56 | | eqid 2733 |
. . . . . . 7
⊢
(comp‘𝑆) =
(comp‘𝑆) |
57 | 1, 40, 5, 41, 2, 42 | funcestrcsetclem2 17886 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) |
58 | 57 | 3ad2antr1 1186 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) ∈ 𝑈) |
59 | 58 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹‘𝑋) ∈ 𝑈) |
60 | 1, 40, 5, 41, 2, 42 | funcestrcsetclem2 17886 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ 𝑈) |
61 | 60 | 3ad2antr2 1187 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) ∈ 𝑈) |
62 | 61 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹‘𝑌) ∈ 𝑈) |
63 | 1, 40, 5, 41, 2, 42 | funcestrcsetclem2 17886 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) ∈ 𝑈) |
64 | 63 | 3ad2antr3 1188 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) ∈ 𝑈) |
65 | 64 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹‘𝑍) ∈ 𝑈) |
66 | 1, 40, 5, 41, 2, 42 | funcestrcsetclem1 17885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
67 | 66 | 3ad2antr1 1186 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) = (Base‘𝑋)) |
68 | 1, 40, 5, 41, 2, 42 | funcestrcsetclem1 17885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) = (Base‘𝑌)) |
69 | 68 | 3ad2antr2 1187 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) = (Base‘𝑌)) |
70 | 67, 69 | feq23d 6613 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
71 | 70 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
72 | 52, 71 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
73 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝜑) |
74 | | 3simpa 1146 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
75 | 74 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
76 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) |
77 | 1, 40, 5, 41, 2, 42, 43, 16, 17 | funcestrcsetclem6 17890 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
78 | 73, 75, 76, 77 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
79 | 78 | feq1d 6603 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌))) |
80 | 72, 79 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
81 | 1, 40, 5, 41, 2, 42 | funcestrcsetclem1 17885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) = (Base‘𝑍)) |
82 | 81 | 3ad2antr3 1188 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) = (Base‘𝑍)) |
83 | 69, 82 | feq23d 6613 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
84 | 83 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
85 | 53, 84 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
86 | | 3simpc 1148 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
87 | 86 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
88 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) |
89 | 1, 40, 5, 41, 2, 42, 43, 17, 24 | funcestrcsetclem6 17890 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
90 | 73, 87, 88, 89 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
91 | 90 | feq1d 6603 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍))) |
92 | 85, 91 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
93 | 40, 47, 56, 59, 62, 65, 80, 92 | setcco 17826 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻))) |
94 | 90, 78 | coeq12d 5777 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
95 | 93, 94 | eqtrd 2773 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
96 | 39, 55, 95 | 3eqtr4d 2783 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |
97 | 96 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
98 | 27, 97 | sylbid 239 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
99 | 98 | 3impia 1115 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |