MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem9 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem9 18160
Description: Lemma 9 for funcestrcsetc 18161. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcestrcsetclem9
StepHypRef Expression
1 funcestrcsetc.e . . . . . 6 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
4 eqid 2735 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
5 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
61, 2estrcbas 18137 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐸))
75, 6eqtr4id 2789 . . . . . . . . . 10 (𝜑𝐵 = 𝑈)
87eleq2d 2820 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
98biimpcd 249 . . . . . . . 8 (𝑋𝐵 → (𝜑𝑋𝑈))
1093ad2ant1 1133 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑋𝑈))
1110impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝑈)
127eleq2d 2820 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
1312biimpcd 249 . . . . . . . 8 (𝑌𝐵 → (𝜑𝑌𝑈))
14133ad2ant2 1134 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑌𝑈))
1514impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝑈)
16 eqid 2735 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
17 eqid 2735 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
181, 3, 4, 11, 15, 16, 17estrchom 18139 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑m (Base‘𝑋)))
1918eleq2d 2820 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ↔ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
207eleq2d 2820 . . . . . . . . 9 (𝜑 → (𝑍𝐵𝑍𝑈))
2120biimpcd 249 . . . . . . . 8 (𝑍𝐵 → (𝜑𝑍𝑈))
22213ad2ant3 1135 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑍𝑈))
2322impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝑈)
24 eqid 2735 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
251, 3, 4, 15, 23, 17, 24estrchom 18139 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝐸)𝑍) = ((Base‘𝑍) ↑m (Base‘𝑌)))
2625eleq2d 2820 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍) ↔ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))))
2719, 26anbi12d 632 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) ↔ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))))
28 elmapi 8863 . . . . . . . . . 10 (𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
29 elmapi 8863 . . . . . . . . . 10 (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
30 fco 6730 . . . . . . . . . 10 ((𝐾:(Base‘𝑌)⟶(Base‘𝑍) ∧ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3128, 29, 30syl2an 596 . . . . . . . . 9 ((𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
32 fvex 6889 . . . . . . . . . 10 (Base‘𝑍) ∈ V
33 fvex 6889 . . . . . . . . . 10 (Base‘𝑋) ∈ V
3432, 33elmap 8885 . . . . . . . . 9 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) ↔ (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3531, 34sylibr 234 . . . . . . . 8 ((𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
3635ancoms 458 . . . . . . 7 ((𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
3736adantl 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
38 fvresi 7165 . . . . . 6 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
3937, 38syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
40 funcestrcsetc.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
41 funcestrcsetc.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
42 funcestrcsetc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
43 funcestrcsetc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
441, 40, 5, 41, 2, 42, 43, 16, 24funcestrcsetclem5 18156 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
45443adantr2 1171 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
4645adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
473adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑈 ∈ WUni)
48 eqid 2735 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
4911adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑋𝑈)
5015adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑌𝑈)
5123adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑍𝑈)
5229ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
5328ad2antll 729 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
541, 47, 48, 49, 50, 51, 16, 17, 24, 52, 53estrcco 18142 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻) = (𝐾𝐻))
5546, 54fveq12d 6883 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)))
56 eqid 2735 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
571, 40, 5, 41, 2, 42funcestrcsetclem2 18153 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
58573ad2antr1 1189 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
5958adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑋) ∈ 𝑈)
601, 40, 5, 41, 2, 42funcestrcsetclem2 18153 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
61603ad2antr2 1190 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
6261adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑌) ∈ 𝑈)
631, 40, 5, 41, 2, 42funcestrcsetclem2 18153 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
64633ad2antr3 1191 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
6564adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑍) ∈ 𝑈)
661, 40, 5, 41, 2, 42funcestrcsetclem1 18152 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
67663ad2antr1 1189 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
681, 40, 5, 41, 2, 42funcestrcsetclem1 18152 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
69683ad2antr2 1190 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
7067, 69feq23d 6701 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7170adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7252, 71mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
73 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝜑)
74 3simpa 1148 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
7574ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋𝐵𝑌𝐵))
76 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
771, 40, 5, 41, 2, 42, 43, 16, 17funcestrcsetclem6 18157 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7873, 75, 76, 77syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7978feq1d 6690 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
8072, 79mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
811, 40, 5, 41, 2, 42funcestrcsetclem1 18152 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
82813ad2antr3 1191 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
8369, 82feq23d 6701 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8483adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8553, 84mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
86 3simpc 1150 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
8786ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑌𝐵𝑍𝐵))
88 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))
891, 40, 5, 41, 2, 42, 43, 17, 24funcestrcsetclem6 18157 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9073, 87, 88, 89syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9190feq1d 6690 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
9285, 91mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
9340, 47, 56, 59, 62, 65, 80, 92setcco 18096 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
9490, 78coeq12d 5844 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9593, 94eqtrd 2770 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9639, 55, 953eqtr4d 2780 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
9796ex 412 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
9827, 97sylbid 240 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
99983impia 1117 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cop 4607  cmpt 5201   I cid 5547  cres 5656  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  WUnicwun 10714  Basecbs 17228  Hom chom 17282  compcco 17283  SetCatcsetc 18088  ExtStrCatcestrc 18134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-wun 10716  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-hom 17295  df-cco 17296  df-setc 18089  df-estrc 18135
This theorem is referenced by:  funcestrcsetc  18161
  Copyright terms: Public domain W3C validator