MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem9 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem9 17397
Description: Lemma 9 for funcestrcsetc 17398. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcestrcsetclem9
StepHypRef Expression
1 funcestrcsetc.e . . . . . 6 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
4 eqid 2821 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 2estrcbas 17374 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐸))
6 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
75, 6syl6reqr 2875 . . . . . . . . . 10 (𝜑𝐵 = 𝑈)
87eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
98biimpcd 251 . . . . . . . 8 (𝑋𝐵 → (𝜑𝑋𝑈))
1093ad2ant1 1129 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑋𝑈))
1110impcom 410 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝑈)
127eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
1312biimpcd 251 . . . . . . . 8 (𝑌𝐵 → (𝜑𝑌𝑈))
14133ad2ant2 1130 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑌𝑈))
1514impcom 410 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝑈)
16 eqid 2821 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
17 eqid 2821 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
181, 3, 4, 11, 15, 16, 17estrchom 17376 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑m (Base‘𝑋)))
1918eleq2d 2898 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ↔ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
207eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑍𝐵𝑍𝑈))
2120biimpcd 251 . . . . . . . 8 (𝑍𝐵 → (𝜑𝑍𝑈))
22213ad2ant3 1131 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑍𝑈))
2322impcom 410 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝑈)
24 eqid 2821 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
251, 3, 4, 15, 23, 17, 24estrchom 17376 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝐸)𝑍) = ((Base‘𝑍) ↑m (Base‘𝑌)))
2625eleq2d 2898 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍) ↔ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))))
2719, 26anbi12d 632 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) ↔ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))))
28 elmapi 8427 . . . . . . . . . 10 (𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
29 elmapi 8427 . . . . . . . . . 10 (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
30 fco 6530 . . . . . . . . . 10 ((𝐾:(Base‘𝑌)⟶(Base‘𝑍) ∧ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3128, 29, 30syl2an 597 . . . . . . . . 9 ((𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
32 fvex 6682 . . . . . . . . . 10 (Base‘𝑍) ∈ V
33 fvex 6682 . . . . . . . . . 10 (Base‘𝑋) ∈ V
3432, 33elmap 8434 . . . . . . . . 9 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) ↔ (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3531, 34sylibr 236 . . . . . . . 8 ((𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
3635ancoms 461 . . . . . . 7 ((𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
3736adantl 484 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
38 fvresi 6934 . . . . . 6 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
3937, 38syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
40 funcestrcsetc.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
41 funcestrcsetc.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
42 funcestrcsetc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
43 funcestrcsetc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
441, 40, 6, 41, 2, 42, 43, 16, 24funcestrcsetclem5 17393 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
45443adantr2 1166 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
4645adantr 483 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
473adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑈 ∈ WUni)
48 eqid 2821 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
4911adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑋𝑈)
5015adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑌𝑈)
5123adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑍𝑈)
5229ad2antrl 726 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
5328ad2antll 727 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
541, 47, 48, 49, 50, 51, 16, 17, 24, 52, 53estrcco 17379 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻) = (𝐾𝐻))
5546, 54fveq12d 6676 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)))
56 eqid 2821 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
571, 40, 6, 41, 2, 42funcestrcsetclem2 17390 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
58573ad2antr1 1184 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
5958adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑋) ∈ 𝑈)
601, 40, 6, 41, 2, 42funcestrcsetclem2 17390 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
61603ad2antr2 1185 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
6261adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑌) ∈ 𝑈)
631, 40, 6, 41, 2, 42funcestrcsetclem2 17390 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
64633ad2antr3 1186 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
6564adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑍) ∈ 𝑈)
661, 40, 6, 41, 2, 42funcestrcsetclem1 17389 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
67663ad2antr1 1184 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
681, 40, 6, 41, 2, 42funcestrcsetclem1 17389 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
69683ad2antr2 1185 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
7067, 69feq23d 6508 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7170adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7252, 71mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
73 simpll 765 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝜑)
74 3simpa 1144 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
7574ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋𝐵𝑌𝐵))
76 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
771, 40, 6, 41, 2, 42, 43, 16, 17funcestrcsetclem6 17394 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7873, 75, 76, 77syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7978feq1d 6498 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
8072, 79mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
811, 40, 6, 41, 2, 42funcestrcsetclem1 17389 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
82813ad2antr3 1186 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
8369, 82feq23d 6508 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8483adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8553, 84mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
86 3simpc 1146 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
8786ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑌𝐵𝑍𝐵))
88 simprr 771 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))
891, 40, 6, 41, 2, 42, 43, 17, 24funcestrcsetclem6 17394 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9073, 87, 88, 89syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9190feq1d 6498 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
9285, 91mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
9340, 47, 56, 59, 62, 65, 80, 92setcco 17342 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
9490, 78coeq12d 5734 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9593, 94eqtrd 2856 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9639, 55, 953eqtr4d 2866 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
9796ex 415 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
9827, 97sylbid 242 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
99983impia 1113 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cop 4572  cmpt 5145   I cid 5458  cres 5556  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  m cmap 8405  WUnicwun 10121  Basecbs 16482  Hom chom 16575  compcco 16576  SetCatcsetc 17334  ExtStrCatcestrc 17371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-wun 10123  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-hom 16588  df-cco 16589  df-setc 17335  df-estrc 17372
This theorem is referenced by:  funcestrcsetc  17398
  Copyright terms: Public domain W3C validator