Proof of Theorem funcringcsetclem9ALTV
Step | Hyp | Ref
| Expression |
1 | | funcringcsetcALTV.r |
. . . . . 6
⊢ 𝑅 = (RingCatALTV‘𝑈) |
2 | | funcringcsetcALTV.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
3 | | funcringcsetcALTV.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ WUni) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑈 ∈ WUni) |
5 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝑅) = (Hom
‘𝑅) |
6 | | simpr1 1192 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
7 | | simpr2 1193 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
8 | 1, 2, 4, 5, 6, 7 | ringchomALTV 45494 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌)) |
9 | 8 | eleq2d 2824 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ↔ 𝐻 ∈ (𝑋 RingHom 𝑌))) |
10 | | simpr3 1194 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
11 | 1, 2, 4, 5, 7, 10 | ringchomALTV 45494 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌(Hom ‘𝑅)𝑍) = (𝑌 RingHom 𝑍)) |
12 | 11 | eleq2d 2824 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍) ↔ 𝐾 ∈ (𝑌 RingHom 𝑍))) |
13 | 9, 12 | anbi12d 630 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) ↔ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)))) |
14 | | rhmco 19896 |
. . . . . . . 8
⊢ ((𝐾 ∈ (𝑌 RingHom 𝑍) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍)) |
15 | 14 | ancoms 458 |
. . . . . . 7
⊢ ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → (𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍)) |
16 | 15 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍)) |
17 | | fvresi 7027 |
. . . . . 6
⊢ ((𝐾 ∘ 𝐻) ∈ (𝑋 RingHom 𝑍) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
19 | | funcringcsetcALTV.s |
. . . . . . . . 9
⊢ 𝑆 = (SetCat‘𝑈) |
20 | | funcringcsetcALTV.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝑆) |
21 | | funcringcsetcALTV.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
22 | | funcringcsetcALTV.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
23 | 1, 19, 2, 20, 3, 21, 22 | funcringcsetclem5ALTV 45509 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍))) |
24 | 23 | 3adantr2 1168 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍))) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍))) |
26 | 4 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑈 ∈ WUni) |
27 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝑅) =
(comp‘𝑅) |
28 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑋 ∈ 𝐵) |
29 | 7 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑌 ∈ 𝐵) |
30 | 10 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑍 ∈ 𝐵) |
31 | | simprl 767 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻 ∈ (𝑋 RingHom 𝑌)) |
32 | | simprr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾 ∈ (𝑌 RingHom 𝑍)) |
33 | 1, 2, 26, 27, 28, 29, 30, 31, 32 | ringccoALTV 45497 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻) = (𝐾 ∘ 𝐻)) |
34 | 25, 33 | fveq12d 6763 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾 ∘ 𝐻))) |
35 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝑆) =
(comp‘𝑆) |
36 | 1, 19, 2, 20, 3, 21 | funcringcsetclem2ALTV 45506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) |
37 | 36 | 3ad2antr1 1186 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) ∈ 𝑈) |
38 | 37 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹‘𝑋) ∈ 𝑈) |
39 | 1, 19, 2, 20, 3, 21 | funcringcsetclem2ALTV 45506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ 𝑈) |
40 | 39 | 3ad2antr2 1187 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) ∈ 𝑈) |
41 | 40 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹‘𝑌) ∈ 𝑈) |
42 | 1, 19, 2, 20, 3, 21 | funcringcsetclem2ALTV 45506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) ∈ 𝑈) |
43 | 42 | 3ad2antr3 1188 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) ∈ 𝑈) |
44 | 43 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹‘𝑍) ∈ 𝑈) |
45 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑋) =
(Base‘𝑋) |
46 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑌) =
(Base‘𝑌) |
47 | 45, 46 | rhmf 19885 |
. . . . . . . . . 10
⊢ (𝐻 ∈ (𝑋 RingHom 𝑌) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
48 | 47 | ad2antrl 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
49 | 1, 19, 2, 20, 3, 21 | funcringcsetclem1ALTV 45505 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
50 | 49 | 3ad2antr1 1186 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) = (Base‘𝑋)) |
51 | 1, 19, 2, 20, 3, 21 | funcringcsetclem1ALTV 45505 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) = (Base‘𝑌)) |
52 | 51 | 3ad2antr2 1187 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) = (Base‘𝑌)) |
53 | 50, 52 | feq23d 6579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
54 | 53 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
55 | 48, 54 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
56 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝜑) |
57 | | 3simpa 1146 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
58 | 57 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
59 | 1, 19, 2, 20, 3, 21, 22 | funcringcsetclem6ALTV 45510 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
60 | 56, 58, 31, 59 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
61 | 60 | feq1d 6569 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌))) |
62 | 55, 61 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
63 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑍) =
(Base‘𝑍) |
64 | 46, 63 | rhmf 19885 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑌 RingHom 𝑍) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
65 | 64 | ad2antll 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
66 | 1, 19, 2, 20, 3, 21 | funcringcsetclem1ALTV 45505 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) = (Base‘𝑍)) |
67 | 66 | 3ad2antr3 1188 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) = (Base‘𝑍)) |
68 | 52, 67 | feq23d 6579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
69 | 68 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
70 | 65, 69 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
71 | | 3simpc 1148 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
72 | 71 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
73 | 1, 19, 2, 20, 3, 21, 22 | funcringcsetclem6ALTV 45510 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
74 | 56, 72, 32, 73 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
75 | 74 | feq1d 6569 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍))) |
76 | 70, 75 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
77 | 19, 26, 35, 38, 41, 44, 62, 76 | setcco 17714 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻))) |
78 | 74, 60 | coeq12d 5762 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
79 | 77, 78 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
80 | 18, 34, 79 | 3eqtr4d 2788 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |
81 | 80 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
82 | 13, 81 | sylbid 239 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
83 | 82 | 3impia 1115 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |