Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem9ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem9ALTV 48237
Description: Lemma 9 for funcringcsetcALTV 48238. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem9ALTV ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcringcsetclem9ALTV
StepHypRef Expression
1 funcringcsetcALTV.r . . . . . 6 𝑅 = (RingCatALTV‘𝑈)
2 funcringcsetcALTV.b . . . . . 6 𝐵 = (Base‘𝑅)
3 funcringcsetcALTV.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
43adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
5 eqid 2737 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
6 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
81, 2, 4, 5, 6, 7ringchomALTV 48218 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌))
98eleq2d 2827 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ↔ 𝐻 ∈ (𝑋 RingHom 𝑌)))
10 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
111, 2, 4, 5, 7, 10ringchomALTV 48218 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝑅)𝑍) = (𝑌 RingHom 𝑍))
1211eleq2d 2827 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍) ↔ 𝐾 ∈ (𝑌 RingHom 𝑍)))
139, 12anbi12d 632 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) ↔ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))))
14 rhmco 20501 . . . . . . . 8 ((𝐾 ∈ (𝑌 RingHom 𝑍) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
1514ancoms 458 . . . . . . 7 ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
1615adantl 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
17 fvresi 7193 . . . . . 6 ((𝐾𝐻) ∈ (𝑋 RingHom 𝑍) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)) = (𝐾𝐻))
1816, 17syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)) = (𝐾𝐻))
19 funcringcsetcALTV.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
20 funcringcsetcALTV.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
21 funcringcsetcALTV.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
22 funcringcsetcALTV.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
231, 19, 2, 20, 3, 21, 22funcringcsetclem5ALTV 48233 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
24233adantr2 1171 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
2524adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
264adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑈 ∈ WUni)
27 eqid 2737 . . . . . . 7 (comp‘𝑅) = (comp‘𝑅)
286adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑋𝐵)
297adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑌𝐵)
3010adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑍𝐵)
31 simprl 771 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻 ∈ (𝑋 RingHom 𝑌))
32 simprr 773 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾 ∈ (𝑌 RingHom 𝑍))
331, 2, 26, 27, 28, 29, 30, 31, 32ringccoALTV 48221 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻) = (𝐾𝐻))
3425, 33fveq12d 6913 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)))
35 eqid 2737 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
361, 19, 2, 20, 3, 21funcringcsetclem2ALTV 48230 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
37363ad2antr1 1189 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
3837adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑋) ∈ 𝑈)
391, 19, 2, 20, 3, 21funcringcsetclem2ALTV 48230 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
40393ad2antr2 1190 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
4140adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑌) ∈ 𝑈)
421, 19, 2, 20, 3, 21funcringcsetclem2ALTV 48230 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
43423ad2antr3 1191 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
4443adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑍) ∈ 𝑈)
45 eqid 2737 . . . . . . . . . . 11 (Base‘𝑋) = (Base‘𝑋)
46 eqid 2737 . . . . . . . . . . 11 (Base‘𝑌) = (Base‘𝑌)
4745, 46rhmf 20485 . . . . . . . . . 10 (𝐻 ∈ (𝑋 RingHom 𝑌) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
4847ad2antrl 728 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
491, 19, 2, 20, 3, 21funcringcsetclem1ALTV 48229 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
50493ad2antr1 1189 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
511, 19, 2, 20, 3, 21funcringcsetclem1ALTV 48229 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
52513ad2antr2 1190 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
5350, 52feq23d 6731 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
5453adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
5548, 54mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
56 simpll 767 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝜑)
57 3simpa 1149 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
5857ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐵𝑌𝐵))
591, 19, 2, 20, 3, 21, 22funcringcsetclem6ALTV 48234 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
6056, 58, 31, 59syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
6160feq1d 6720 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
6255, 61mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
63 eqid 2737 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
6446, 63rhmf 20485 . . . . . . . . . 10 (𝐾 ∈ (𝑌 RingHom 𝑍) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
6564ad2antll 729 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
661, 19, 2, 20, 3, 21funcringcsetclem1ALTV 48229 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
67663ad2antr3 1191 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
6852, 67feq23d 6731 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
6968adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
7065, 69mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
71 3simpc 1151 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
7271ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑌𝐵𝑍𝐵))
731, 19, 2, 20, 3, 21, 22funcringcsetclem6ALTV 48234 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
7456, 72, 32, 73syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
7574feq1d 6720 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
7670, 75mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
7719, 26, 35, 38, 41, 44, 62, 76setcco 18128 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
7874, 60coeq12d 5875 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
7977, 78eqtrd 2777 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
8018, 34, 793eqtr4d 2787 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
8180ex 412 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
8213, 81sylbid 240 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
83823impia 1118 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cop 4632  cmpt 5225   I cid 5577  cres 5687  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  WUnicwun 10740  Basecbs 17247  Hom chom 17308  compcco 17309  SetCatcsetc 18120   RingHom crh 20469  RingCatALTVcringcALTV 48203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-wun 10742  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-hom 17321  df-cco 17322  df-0g 17486  df-setc 18121  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-ghm 19231  df-mgp 20138  df-ur 20179  df-ring 20232  df-rhm 20472  df-ringcALTV 48204
This theorem is referenced by:  funcringcsetcALTV  48238
  Copyright terms: Public domain W3C validator