Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem9ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem9ALTV 48309
Description: Lemma 9 for funcringcsetcALTV 48310. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem9ALTV ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcringcsetclem9ALTV
StepHypRef Expression
1 funcringcsetcALTV.r . . . . . 6 𝑅 = (RingCatALTV‘𝑈)
2 funcringcsetcALTV.b . . . . . 6 𝐵 = (Base‘𝑅)
3 funcringcsetcALTV.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
43adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
5 eqid 2729 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
6 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
81, 2, 4, 5, 6, 7ringchomALTV 48290 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌))
98eleq2d 2814 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ↔ 𝐻 ∈ (𝑋 RingHom 𝑌)))
10 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
111, 2, 4, 5, 7, 10ringchomALTV 48290 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝑅)𝑍) = (𝑌 RingHom 𝑍))
1211eleq2d 2814 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍) ↔ 𝐾 ∈ (𝑌 RingHom 𝑍)))
139, 12anbi12d 632 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) ↔ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))))
14 rhmco 20410 . . . . . . . 8 ((𝐾 ∈ (𝑌 RingHom 𝑍) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
1514ancoms 458 . . . . . . 7 ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
1615adantl 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾𝐻) ∈ (𝑋 RingHom 𝑍))
17 fvresi 7147 . . . . . 6 ((𝐾𝐻) ∈ (𝑋 RingHom 𝑍) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)) = (𝐾𝐻))
1816, 17syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)) = (𝐾𝐻))
19 funcringcsetcALTV.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
20 funcringcsetcALTV.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
21 funcringcsetcALTV.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
22 funcringcsetcALTV.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
231, 19, 2, 20, 3, 21, 22funcringcsetclem5ALTV 48305 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
24233adantr2 1171 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
2524adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐺𝑍) = ( I ↾ (𝑋 RingHom 𝑍)))
264adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑈 ∈ WUni)
27 eqid 2729 . . . . . . 7 (comp‘𝑅) = (comp‘𝑅)
286adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑋𝐵)
297adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑌𝐵)
3010adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝑍𝐵)
31 simprl 770 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻 ∈ (𝑋 RingHom 𝑌))
32 simprr 772 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾 ∈ (𝑌 RingHom 𝑍))
331, 2, 26, 27, 28, 29, 30, 31, 32ringccoALTV 48293 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻) = (𝐾𝐻))
3425, 33fveq12d 6865 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (( I ↾ (𝑋 RingHom 𝑍))‘(𝐾𝐻)))
35 eqid 2729 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
361, 19, 2, 20, 3, 21funcringcsetclem2ALTV 48302 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
37363ad2antr1 1189 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
3837adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑋) ∈ 𝑈)
391, 19, 2, 20, 3, 21funcringcsetclem2ALTV 48302 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
40393ad2antr2 1190 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
4140adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑌) ∈ 𝑈)
421, 19, 2, 20, 3, 21funcringcsetclem2ALTV 48302 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
43423ad2antr3 1191 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
4443adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐹𝑍) ∈ 𝑈)
45 eqid 2729 . . . . . . . . . . 11 (Base‘𝑋) = (Base‘𝑋)
46 eqid 2729 . . . . . . . . . . 11 (Base‘𝑌) = (Base‘𝑌)
4745, 46rhmf 20394 . . . . . . . . . 10 (𝐻 ∈ (𝑋 RingHom 𝑌) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
4847ad2antrl 728 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
491, 19, 2, 20, 3, 21funcringcsetclem1ALTV 48301 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
50493ad2antr1 1189 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
511, 19, 2, 20, 3, 21funcringcsetclem1ALTV 48301 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
52513ad2antr2 1190 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
5350, 52feq23d 6683 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
5453adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
5548, 54mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
56 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝜑)
57 3simpa 1148 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
5857ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑋𝐵𝑌𝐵))
591, 19, 2, 20, 3, 21, 22funcringcsetclem6ALTV 48306 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
6056, 58, 31, 59syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
6160feq1d 6670 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
6255, 61mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
63 eqid 2729 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
6446, 63rhmf 20394 . . . . . . . . . 10 (𝐾 ∈ (𝑌 RingHom 𝑍) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
6564ad2antll 729 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
661, 19, 2, 20, 3, 21funcringcsetclem1ALTV 48301 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
67663ad2antr3 1191 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
6852, 67feq23d 6683 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
6968adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
7065, 69mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
71 3simpc 1150 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
7271ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (𝑌𝐵𝑍𝐵))
731, 19, 2, 20, 3, 21, 22funcringcsetclem6ALTV 48306 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
7456, 72, 32, 73syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
7574feq1d 6670 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
7670, 75mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
7719, 26, 35, 38, 41, 44, 62, 76setcco 18045 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
7874, 60coeq12d 5828 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
7977, 78eqtrd 2764 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
8018, 34, 793eqtr4d 2774 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
8180ex 412 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋 RingHom 𝑌) ∧ 𝐾 ∈ (𝑌 RingHom 𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
8213, 81sylbid 240 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
83823impia 1117 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595  cmpt 5188   I cid 5532  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  WUnicwun 10653  Basecbs 17179  Hom chom 17231  compcco 17232  SetCatcsetc 18037   RingHom crh 20378  RingCatALTVcringcALTV 48275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-wun 10655  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-hom 17244  df-cco 17245  df-0g 17404  df-setc 18038  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-ghm 19145  df-mgp 20050  df-ur 20091  df-ring 20144  df-rhm 20381  df-ringcALTV 48276
This theorem is referenced by:  funcringcsetcALTV  48310
  Copyright terms: Public domain W3C validator