Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1119 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr2 1169 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: plttr 18060 latjlej2 18172 latmlem1 18187 latmlem2 18188 latledi 18195 latmlej11 18196 latmlej12 18197 ipopos 18254 grppnpcan2 18669 mulgsubdir 18743 imasring 19858 zntoslem 20764 mettri2 23494 mettri 23505 xmetrtri 23508 xmetrtri2 23509 metrtri 23510 ablomuldiv 28914 ablonnncan1 28919 nvmdi 29010 dipdi 29205 dipassr 29208 dipsubdir 29210 dipsubdi 29211 btwncomim 34315 cgr3tr4 34354 cgr3rflx 34356 colinbtwnle 34420 rngosubdi 36103 rngosubdir 36104 dmncan1 36234 dmncan2 36235 omlfh1N 37272 omlfh3N 37273 cvrnbtwn3 37290 cvrnbtwn4 37293 cvrcmp2 37298 hlatjrot 37387 cvrat3 37456 lplnribN 37565 ltrn2ateq 38194 dvalveclem 39039 isdomn4 40172 mendlmod 41018 |
Copyright terms: Public domain | W3C validator |