MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3r2 Structured version   Visualization version   GIF version

Theorem 3adant3r2 1184
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adant3r2
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1120 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr2 1171 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  plttr  18246  latjlej2  18360  latmlem1  18375  latmlem2  18376  latledi  18383  latmlej11  18384  latmlej12  18385  ipopos  18442  grppnpcan2  18913  mulgsubdir  18993  imasrng  20062  imasring  20215  isdomn4  20601  zntoslem  21463  mettri2  24227  mettri  24238  xmetrtri  24241  xmetrtri2  24242  metrtri  24243  ablomuldiv  30496  ablonnncan1  30501  nvmdi  30592  dipdi  30787  dipassr  30790  dipsubdir  30792  dipsubdi  30793  btwncomim  35987  cgr3tr4  36026  cgr3rflx  36028  colinbtwnle  36092  rngosubdi  37925  rngosubdir  37926  dmncan1  38056  dmncan2  38057  omlfh1N  39237  omlfh3N  39238  cvrnbtwn3  39255  cvrnbtwn4  39258  cvrcmp2  39263  hlatjrot  39352  cvrat3  39421  lplnribN  39530  ltrn2ateq  40159  dvalveclem  41004  mendlmod  43162
  Copyright terms: Public domain W3C validator