Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1119 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr2 1169 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: plttr 18071 latjlej2 18183 latmlem1 18198 latmlem2 18199 latledi 18206 latmlej11 18207 latmlej12 18208 ipopos 18265 grppnpcan2 18680 mulgsubdir 18754 imasring 19869 zntoslem 20775 mettri2 23505 mettri 23516 xmetrtri 23519 xmetrtri2 23520 metrtri 23521 ablomuldiv 28923 ablonnncan1 28928 nvmdi 29019 dipdi 29214 dipassr 29217 dipsubdir 29219 dipsubdi 29220 btwncomim 34324 cgr3tr4 34363 cgr3rflx 34365 colinbtwnle 34429 rngosubdi 36112 rngosubdir 36113 dmncan1 36243 dmncan2 36244 omlfh1N 37281 omlfh3N 37282 cvrnbtwn3 37299 cvrnbtwn4 37302 cvrcmp2 37307 hlatjrot 37396 cvrat3 37465 lplnribN 37574 ltrn2ateq 38203 dvalveclem 39048 isdomn4 40181 mendlmod 41027 |
Copyright terms: Public domain | W3C validator |