| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr2 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: plttr 18301 latjlej2 18413 latmlem1 18428 latmlem2 18429 latledi 18436 latmlej11 18437 latmlej12 18438 ipopos 18495 grppnpcan2 18966 mulgsubdir 19046 imasrng 20086 imasring 20239 isdomn4 20625 zntoslem 21466 mettri2 24229 mettri 24240 xmetrtri 24243 xmetrtri2 24244 metrtri 24245 ablomuldiv 30481 ablonnncan1 30486 nvmdi 30577 dipdi 30772 dipassr 30775 dipsubdir 30777 dipsubdi 30778 btwncomim 36001 cgr3tr4 36040 cgr3rflx 36042 colinbtwnle 36106 rngosubdi 37939 rngosubdir 37940 dmncan1 38070 dmncan2 38071 omlfh1N 39251 omlfh3N 39252 cvrnbtwn3 39269 cvrnbtwn4 39272 cvrcmp2 39277 hlatjrot 39366 cvrat3 39436 lplnribN 39545 ltrn2ateq 40174 dvalveclem 41019 mendlmod 43178 |
| Copyright terms: Public domain | W3C validator |