MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3r2 Structured version   Visualization version   GIF version

Theorem 3adant3r2 1184
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adant3r2
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1120 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr2 1171 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  plttr  18246  latjlej2  18360  latmlem1  18375  latmlem2  18376  latledi  18383  latmlej11  18384  latmlej12  18385  ipopos  18442  grppnpcan2  18947  mulgsubdir  19027  imasrng  20095  imasring  20248  isdomn4  20631  zntoslem  21493  mettri2  24256  mettri  24267  xmetrtri  24270  xmetrtri2  24271  metrtri  24272  ablomuldiv  30532  ablonnncan1  30537  nvmdi  30628  dipdi  30823  dipassr  30826  dipsubdir  30828  dipsubdi  30829  btwncomim  36055  cgr3tr4  36094  cgr3rflx  36096  colinbtwnle  36160  rngosubdi  37993  rngosubdir  37994  dmncan1  38124  dmncan2  38125  omlfh1N  39305  omlfh3N  39306  cvrnbtwn3  39323  cvrnbtwn4  39326  cvrcmp2  39331  hlatjrot  39420  cvrat3  39489  lplnribN  39598  ltrn2ateq  40227  dvalveclem  41072  mendlmod  43230
  Copyright terms: Public domain W3C validator