| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr2 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: plttr 18246 latjlej2 18360 latmlem1 18375 latmlem2 18376 latledi 18383 latmlej11 18384 latmlej12 18385 ipopos 18442 grppnpcan2 18913 mulgsubdir 18993 imasrng 20062 imasring 20215 isdomn4 20601 zntoslem 21463 mettri2 24227 mettri 24238 xmetrtri 24241 xmetrtri2 24242 metrtri 24243 ablomuldiv 30496 ablonnncan1 30501 nvmdi 30592 dipdi 30787 dipassr 30790 dipsubdir 30792 dipsubdi 30793 btwncomim 35987 cgr3tr4 36026 cgr3rflx 36028 colinbtwnle 36092 rngosubdi 37925 rngosubdir 37926 dmncan1 38056 dmncan2 38057 omlfh1N 39237 omlfh3N 39238 cvrnbtwn3 39255 cvrnbtwn4 39258 cvrcmp2 39263 hlatjrot 39352 cvrat3 39421 lplnribN 39530 ltrn2ateq 40159 dvalveclem 41004 mendlmod 43162 |
| Copyright terms: Public domain | W3C validator |