| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr2 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: plttr 18246 latjlej2 18360 latmlem1 18375 latmlem2 18376 latledi 18383 latmlej11 18384 latmlej12 18385 ipopos 18442 grppnpcan2 18947 mulgsubdir 19027 imasrng 20095 imasring 20248 isdomn4 20631 zntoslem 21493 mettri2 24256 mettri 24267 xmetrtri 24270 xmetrtri2 24271 metrtri 24272 ablomuldiv 30532 ablonnncan1 30537 nvmdi 30628 dipdi 30823 dipassr 30826 dipsubdir 30828 dipsubdi 30829 btwncomim 36055 cgr3tr4 36094 cgr3rflx 36096 colinbtwnle 36160 rngosubdi 37993 rngosubdir 37994 dmncan1 38124 dmncan2 38125 omlfh1N 39305 omlfh3N 39306 cvrnbtwn3 39323 cvrnbtwn4 39326 cvrcmp2 39331 hlatjrot 39420 cvrat3 39489 lplnribN 39598 ltrn2ateq 40227 dvalveclem 41072 mendlmod 43230 |
| Copyright terms: Public domain | W3C validator |