| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr2 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: plttr 18350 latjlej2 18462 latmlem1 18477 latmlem2 18478 latledi 18485 latmlej11 18486 latmlej12 18487 ipopos 18544 grppnpcan2 19015 mulgsubdir 19095 imasrng 20135 imasring 20288 isdomn4 20674 zntoslem 21515 mettri2 24278 mettri 24289 xmetrtri 24292 xmetrtri2 24293 metrtri 24294 ablomuldiv 30479 ablonnncan1 30484 nvmdi 30575 dipdi 30770 dipassr 30773 dipsubdir 30775 dipsubdi 30776 btwncomim 35977 cgr3tr4 36016 cgr3rflx 36018 colinbtwnle 36082 rngosubdi 37915 rngosubdir 37916 dmncan1 38046 dmncan2 38047 omlfh1N 39222 omlfh3N 39223 cvrnbtwn3 39240 cvrnbtwn4 39243 cvrcmp2 39248 hlatjrot 39337 cvrat3 39407 lplnribN 39516 ltrn2ateq 40145 dvalveclem 40990 mendlmod 43160 |
| Copyright terms: Public domain | W3C validator |