| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr2 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: plttr 18308 latjlej2 18420 latmlem1 18435 latmlem2 18436 latledi 18443 latmlej11 18444 latmlej12 18445 ipopos 18502 grppnpcan2 18973 mulgsubdir 19053 imasrng 20093 imasring 20246 isdomn4 20632 zntoslem 21473 mettri2 24236 mettri 24247 xmetrtri 24250 xmetrtri2 24251 metrtri 24252 ablomuldiv 30488 ablonnncan1 30493 nvmdi 30584 dipdi 30779 dipassr 30782 dipsubdir 30784 dipsubdi 30785 btwncomim 36008 cgr3tr4 36047 cgr3rflx 36049 colinbtwnle 36113 rngosubdi 37946 rngosubdir 37947 dmncan1 38077 dmncan2 38078 omlfh1N 39258 omlfh3N 39259 cvrnbtwn3 39276 cvrnbtwn4 39279 cvrcmp2 39284 hlatjrot 39373 cvrat3 39443 lplnribN 39552 ltrn2ateq 40181 dvalveclem 41026 mendlmod 43185 |
| Copyright terms: Public domain | W3C validator |