![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr2 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: plttr 18412 latjlej2 18524 latmlem1 18539 latmlem2 18540 latledi 18547 latmlej11 18548 latmlej12 18549 ipopos 18606 grppnpcan2 19074 mulgsubdir 19154 imasrng 20204 imasring 20353 isdomn4 20738 zntoslem 21598 mettri2 24372 mettri 24383 xmetrtri 24386 xmetrtri2 24387 metrtri 24388 ablomuldiv 30584 ablonnncan1 30589 nvmdi 30680 dipdi 30875 dipassr 30878 dipsubdir 30880 dipsubdi 30881 btwncomim 35977 cgr3tr4 36016 cgr3rflx 36018 colinbtwnle 36082 rngosubdi 37905 rngosubdir 37906 dmncan1 38036 dmncan2 38037 omlfh1N 39214 omlfh3N 39215 cvrnbtwn3 39232 cvrnbtwn4 39235 cvrcmp2 39240 hlatjrot 39329 cvrat3 39399 lplnribN 39508 ltrn2ateq 40137 dvalveclem 40982 mendlmod 43150 |
Copyright terms: Public domain | W3C validator |