Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1118 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr2 1168 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: plttr 17975 latjlej2 18087 latmlem1 18102 latmlem2 18103 latledi 18110 latmlej11 18111 latmlej12 18112 ipopos 18169 grppnpcan2 18584 mulgsubdir 18658 imasring 19773 zntoslem 20676 mettri2 23402 mettri 23413 xmetrtri 23416 xmetrtri2 23417 metrtri 23418 ablomuldiv 28815 ablonnncan1 28820 nvmdi 28911 dipdi 29106 dipassr 29109 dipsubdir 29111 dipsubdi 29112 btwncomim 34242 cgr3tr4 34281 cgr3rflx 34283 colinbtwnle 34347 rngosubdi 36030 rngosubdir 36031 dmncan1 36161 dmncan2 36162 omlfh1N 37199 omlfh3N 37200 cvrnbtwn3 37217 cvrnbtwn4 37220 cvrcmp2 37225 hlatjrot 37314 cvrat3 37383 lplnribN 37492 ltrn2ateq 38121 dvalveclem 38966 isdomn4 40100 mendlmod 40934 |
Copyright terms: Public domain | W3C validator |