MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3r2 Structured version   Visualization version   GIF version

Theorem 3adant3r2 1182
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adant3r2
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expb 1119 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323adantr2 1169 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  plttr  18060  latjlej2  18172  latmlem1  18187  latmlem2  18188  latledi  18195  latmlej11  18196  latmlej12  18197  ipopos  18254  grppnpcan2  18669  mulgsubdir  18743  imasring  19858  zntoslem  20764  mettri2  23494  mettri  23505  xmetrtri  23508  xmetrtri2  23509  metrtri  23510  ablomuldiv  28914  ablonnncan1  28919  nvmdi  29010  dipdi  29205  dipassr  29208  dipsubdir  29210  dipsubdi  29211  btwncomim  34315  cgr3tr4  34354  cgr3rflx  34356  colinbtwnle  34420  rngosubdi  36103  rngosubdir  36104  dmncan1  36234  dmncan2  36235  omlfh1N  37272  omlfh3N  37273  cvrnbtwn3  37290  cvrnbtwn4  37293  cvrcmp2  37298  hlatjrot  37387  cvrat3  37456  lplnribN  37565  ltrn2ateq  38194  dvalveclem  39039  isdomn4  40172  mendlmod  41018
  Copyright terms: Public domain W3C validator