| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr2 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: plttr 18277 latjlej2 18389 latmlem1 18404 latmlem2 18405 latledi 18412 latmlej11 18413 latmlej12 18414 ipopos 18471 grppnpcan2 18942 mulgsubdir 19022 imasrng 20062 imasring 20215 isdomn4 20601 zntoslem 21442 mettri2 24205 mettri 24216 xmetrtri 24219 xmetrtri2 24220 metrtri 24221 ablomuldiv 30454 ablonnncan1 30459 nvmdi 30550 dipdi 30745 dipassr 30748 dipsubdir 30750 dipsubdi 30751 btwncomim 35974 cgr3tr4 36013 cgr3rflx 36015 colinbtwnle 36079 rngosubdi 37912 rngosubdir 37913 dmncan1 38043 dmncan2 38044 omlfh1N 39224 omlfh3N 39225 cvrnbtwn3 39242 cvrnbtwn4 39245 cvrcmp2 39250 hlatjrot 39339 cvrat3 39409 lplnribN 39518 ltrn2ateq 40147 dvalveclem 40992 mendlmod 43151 |
| Copyright terms: Public domain | W3C validator |