| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
| 2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adantl2 1168 3adantr2 1171 fpropnf1 7244 cfcof 10233 axcclem 10416 enqeq 10893 leltletr 11271 ltleletr 11273 ixxssixx 13326 prodmolem2 15907 prodmo 15908 zprod 15909 muldvds1 16256 dvds2add 16266 dvds2sub 16267 dvdstr 16270 initoeu2lem2 17983 pospropd 18292 mndissubm 18740 csrgbinom 20147 smadiadetglem2 22565 ismbf3d 25561 mbfi1flimlem 25629 colinearalg 28843 frusgrnn0 29505 2wlkond 29873 2pthond 29878 2pthon3v 29879 umgr2adedgwlkonALT 29883 vdgn1frgrv2 30231 frgr2wwlkeqm 30266 bnj967 34941 bnj1110 34978 subgrwlk 35119 cgr3permute3 36030 cgr3com 36036 brofs2 36060 bj-idreseq 37145 areacirclem4 37700 paddasslem14 39822 lhpexle1 39997 cdlemk19w 40961 ismrc 42682 iocinico 43194 gneispb 44113 fourierdlem113 46210 sigaras 46846 sigarms 46847 plusmod5ne 47336 gpgusgralem 48037 lincresunit3lem3 48453 lincresunit3 48460 |
| Copyright terms: Public domain | W3C validator |