Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1129 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3adantl2 1165 3adantr2 1168 fpropnf1 7134 cfcof 10014 axcclem 10197 enqeq 10674 ltleletr 11051 ixxssixx 13075 prodmolem2 15626 prodmo 15627 zprod 15628 muldvds1 15971 dvds2add 15980 dvds2sub 15981 dvdstr 15984 initoeu2lem2 17711 pospropd 18026 mndissubm 18427 csrgbinom 19763 smadiadetglem2 21802 ismbf3d 24799 mbfi1flimlem 24868 colinearalg 27259 frusgrnn0 27919 2wlkond 28281 2pthond 28286 2pthon3v 28287 umgr2adedgwlkonALT 28291 vdgn1frgrv2 28639 frgr2wwlkeqm 28674 bnj967 32904 bnj1110 32941 subgrwlk 33073 cgr3permute3 34328 cgr3com 34334 brofs2 34358 bj-idreseq 35312 areacirclem4 35847 paddasslem14 37826 lhpexle1 38001 cdlemk19w 38965 ismrc 40503 iocinico 41023 gneispb 41694 fourierdlem113 43714 sigaras 44322 sigarms 44323 leltletr 44737 lincresunit3lem3 45767 lincresunit3 45774 |
Copyright terms: Public domain | W3C validator |