| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
| 2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adantl2 1168 3adantr2 1171 fpropnf1 7201 cfcof 10165 axcclem 10348 enqeq 10825 leltletr 11204 ltleletr 11206 ixxssixx 13259 prodmolem2 15842 prodmo 15843 zprod 15844 muldvds1 16191 dvds2add 16201 dvds2sub 16202 dvdstr 16205 initoeu2lem2 17922 pospropd 18231 mndissubm 18715 csrgbinom 20151 smadiadetglem2 22588 ismbf3d 25583 mbfi1flimlem 25651 colinearalg 28889 frusgrnn0 29551 2wlkond 29916 2pthond 29921 2pthon3v 29922 umgr2adedgwlkonALT 29926 vdgn1frgrv2 30274 frgr2wwlkeqm 30309 bnj967 34955 bnj1110 34992 subgrwlk 35174 cgr3permute3 36087 cgr3com 36093 brofs2 36117 bj-idreseq 37202 areacirclem4 37757 paddasslem14 39878 lhpexle1 40053 cdlemk19w 41017 ismrc 42740 iocinico 43251 gneispb 44170 fourierdlem113 46263 sigaras 46899 sigarms 46900 plusmod5ne 47382 gpgusgralem 48093 lincresunit3lem3 48512 lincresunit3 48519 |
| Copyright terms: Public domain | W3C validator |