| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
| 2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adantl2 1168 3adantr2 1171 fpropnf1 7242 cfcof 10227 axcclem 10410 enqeq 10887 leltletr 11265 ltleletr 11267 ixxssixx 13320 prodmolem2 15901 prodmo 15902 zprod 15903 muldvds1 16250 dvds2add 16260 dvds2sub 16261 dvdstr 16264 initoeu2lem2 17977 pospropd 18286 mndissubm 18734 csrgbinom 20141 smadiadetglem2 22559 ismbf3d 25555 mbfi1flimlem 25623 colinearalg 28837 frusgrnn0 29499 2wlkond 29867 2pthond 29872 2pthon3v 29873 umgr2adedgwlkonALT 29877 vdgn1frgrv2 30225 frgr2wwlkeqm 30260 bnj967 34935 bnj1110 34972 subgrwlk 35119 cgr3permute3 36035 cgr3com 36041 brofs2 36065 bj-idreseq 37150 areacirclem4 37705 paddasslem14 39827 lhpexle1 40002 cdlemk19w 40966 ismrc 42689 iocinico 43201 gneispb 44120 fourierdlem113 46217 sigaras 46853 sigarms 46854 plusmod5ne 47346 gpgusgralem 48047 lincresunit3lem3 48463 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |