Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: 3adantl2 1167 3adantr2 1170 fpropnf1 7172 cfcof 10076 axcclem 10259 enqeq 10736 leltletr 11112 ltleletr 11114 ixxssixx 13139 prodmolem2 15690 prodmo 15691 zprod 15692 muldvds1 16035 dvds2add 16044 dvds2sub 16045 dvdstr 16048 initoeu2lem2 17775 pospropd 18090 mndissubm 18491 csrgbinom 19827 smadiadetglem2 21866 ismbf3d 24863 mbfi1flimlem 24932 colinearalg 27323 frusgrnn0 27983 2wlkond 28347 2pthond 28352 2pthon3v 28353 umgr2adedgwlkonALT 28357 vdgn1frgrv2 28705 frgr2wwlkeqm 28740 bnj967 32970 bnj1110 33007 subgrwlk 33139 cgr3permute3 34394 cgr3com 34400 brofs2 34424 bj-idreseq 35377 areacirclem4 35912 paddasslem14 37889 lhpexle1 38064 cdlemk19w 39028 ismrc 40560 iocinico 41081 gneispb 41779 fourierdlem113 43809 sigaras 44429 sigarms 44430 lincresunit3lem3 45873 lincresunit3 45880 |
Copyright terms: Public domain | W3C validator |