| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
| 2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adantl2 1168 3adantr2 1171 fpropnf1 7209 cfcof 10174 axcclem 10357 enqeq 10834 leltletr 11213 ltleletr 11215 ixxssixx 13263 prodmolem2 15846 prodmo 15847 zprod 15848 muldvds1 16195 dvds2add 16205 dvds2sub 16206 dvdstr 16209 initoeu2lem2 17926 pospropd 18235 mndissubm 18719 csrgbinom 20154 smadiadetglem2 22590 ismbf3d 25585 mbfi1flimlem 25653 colinearalg 28892 frusgrnn0 29554 2wlkond 29919 2pthond 29924 2pthon3v 29925 umgr2adedgwlkonALT 29929 vdgn1frgrv2 30280 frgr2wwlkeqm 30315 bnj967 34980 bnj1110 35017 subgrwlk 35199 cgr3permute3 36114 cgr3com 36120 brofs2 36144 bj-idreseq 37229 areacirclem4 37774 paddasslem14 39955 lhpexle1 40130 cdlemk19w 41094 ismrc 42821 iocinico 43332 gneispb 44251 fourierdlem113 46344 sigaras 46980 sigarms 46981 plusmod5ne 47472 gpgusgralem 48183 lincresunit3lem3 48602 lincresunit3 48609 |
| Copyright terms: Public domain | W3C validator |