![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adantl2 1167 3adantr2 1170 fpropnf1 7304 cfcof 10343 axcclem 10526 enqeq 11003 leltletr 11381 ltleletr 11383 ixxssixx 13421 prodmolem2 15983 prodmo 15984 zprod 15985 muldvds1 16329 dvds2add 16338 dvds2sub 16339 dvdstr 16342 initoeu2lem2 18082 pospropd 18397 mndissubm 18842 csrgbinom 20259 smadiadetglem2 22699 ismbf3d 25708 mbfi1flimlem 25777 colinearalg 28943 frusgrnn0 29607 2wlkond 29970 2pthond 29975 2pthon3v 29976 umgr2adedgwlkonALT 29980 vdgn1frgrv2 30328 frgr2wwlkeqm 30363 bnj967 34921 bnj1110 34958 subgrwlk 35100 cgr3permute3 36011 cgr3com 36017 brofs2 36041 bj-idreseq 37128 areacirclem4 37671 paddasslem14 39790 lhpexle1 39965 cdlemk19w 40929 ismrc 42657 iocinico 43173 gneispb 44093 fourierdlem113 46140 sigaras 46776 sigarms 46777 lincresunit3lem3 48203 lincresunit3 48210 |
Copyright terms: Public domain | W3C validator |