![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adantl2 1167 3adantr2 1170 fpropnf1 7307 cfcof 10346 axcclem 10529 enqeq 11006 leltletr 11384 ltleletr 11386 ixxssixx 13432 prodmolem2 16000 prodmo 16001 zprod 16002 muldvds1 16347 dvds2add 16356 dvds2sub 16357 dvdstr 16360 initoeu2lem2 18102 pospropd 18417 mndissubm 18862 csrgbinom 20279 smadiadetglem2 22719 ismbf3d 25728 mbfi1flimlem 25797 colinearalg 28963 frusgrnn0 29627 2wlkond 29990 2pthond 29995 2pthon3v 29996 umgr2adedgwlkonALT 30000 vdgn1frgrv2 30348 frgr2wwlkeqm 30383 bnj967 34941 bnj1110 34978 subgrwlk 35120 cgr3permute3 36031 cgr3com 36037 brofs2 36061 bj-idreseq 37148 areacirclem4 37691 paddasslem14 39810 lhpexle1 39985 cdlemk19w 40949 ismrc 42676 iocinico 43192 gneispb 44112 fourierdlem113 46158 sigaras 46794 sigarms 46795 plusmod5ne 47268 gpgusgralem 47900 lincresunit3lem3 48274 lincresunit3 48281 |
Copyright terms: Public domain | W3C validator |