![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1132 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3adantl2 1168 3adantr2 1171 fpropnf1 7266 cfcof 10269 axcclem 10452 enqeq 10929 leltletr 11305 ltleletr 11307 ixxssixx 13338 prodmolem2 15879 prodmo 15880 zprod 15881 muldvds1 16224 dvds2add 16233 dvds2sub 16234 dvdstr 16237 initoeu2lem2 17965 pospropd 18280 mndissubm 18688 csrgbinom 20055 smadiadetglem2 22174 ismbf3d 25171 mbfi1flimlem 25240 colinearalg 28199 frusgrnn0 28859 2wlkond 29222 2pthond 29227 2pthon3v 29228 umgr2adedgwlkonALT 29232 vdgn1frgrv2 29580 frgr2wwlkeqm 29615 bnj967 33987 bnj1110 34024 subgrwlk 34154 cgr3permute3 35050 cgr3com 35056 brofs2 35080 gg-cncrng 35231 bj-idreseq 36091 areacirclem4 36627 paddasslem14 38752 lhpexle1 38927 cdlemk19w 39891 ismrc 41487 iocinico 42009 gneispb 42930 fourierdlem113 44983 sigaras 45619 sigarms 45620 lincresunit3lem3 47203 lincresunit3 47210 |
Copyright terms: Public domain | W3C validator |