| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
| 2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adantl2 1167 3adantr2 1170 fpropnf1 7269 cfcof 10296 axcclem 10479 enqeq 10956 leltletr 11334 ltleletr 11336 ixxssixx 13383 prodmolem2 15954 prodmo 15955 zprod 15956 muldvds1 16301 dvds2add 16310 dvds2sub 16311 dvdstr 16314 initoeu2lem2 18032 pospropd 18342 mndissubm 18790 csrgbinom 20198 smadiadetglem2 22627 ismbf3d 25626 mbfi1flimlem 25694 colinearalg 28856 frusgrnn0 29518 2wlkond 29886 2pthond 29891 2pthon3v 29892 umgr2adedgwlkonALT 29896 vdgn1frgrv2 30244 frgr2wwlkeqm 30279 bnj967 34934 bnj1110 34971 subgrwlk 35112 cgr3permute3 36023 cgr3com 36029 brofs2 36053 bj-idreseq 37138 areacirclem4 37693 paddasslem14 39810 lhpexle1 39985 cdlemk19w 40949 ismrc 42690 iocinico 43202 gneispb 44121 fourierdlem113 46206 sigaras 46842 sigarms 46843 plusmod5ne 47320 gpgusgralem 47984 lincresunit3lem3 48364 lincresunit3 48371 |
| Copyright terms: Public domain | W3C validator |