Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1128 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: 3adantl2 1164 3adantr2 1167 fpropnf1 7017 cfcof 9734 axcclem 9917 enqeq 10394 ltleletr 10771 ixxssixx 12793 prodmolem2 15337 prodmo 15338 zprod 15339 muldvds1 15682 dvds2add 15691 dvds2sub 15692 dvdstr 15695 initoeu2lem2 17341 pospropd 17810 mndissubm 18038 csrgbinom 19364 smadiadetglem2 21372 ismbf3d 24354 mbfi1flimlem 24422 colinearalg 26803 frusgrnn0 27460 2wlkond 27822 2pthond 27827 2pthon3v 27828 umgr2adedgwlkonALT 27832 vdgn1frgrv2 28180 frgr2wwlkeqm 28215 bnj967 32445 bnj1110 32482 subgrwlk 32610 cgr3permute3 33898 cgr3com 33904 brofs2 33928 bj-idreseq 34857 areacirclem4 35428 paddasslem14 37409 lhpexle1 37584 cdlemk19w 38548 ismrc 40015 iocinico 40535 gneispb 41207 fourierdlem113 43227 sigaras 43835 sigarms 43836 leltletr 44218 lincresunit3lem3 45248 lincresunit3 45255 |
Copyright terms: Public domain | W3C validator |