![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1124 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1082 |
This theorem is referenced by: 3adantl2 1160 3adantr2 1163 fpropnf1 6893 cfcof 9545 axcclem 9728 enqeq 10205 ltleletr 10582 ixxssixx 12602 prodmolem2 15122 prodmo 15123 zprod 15124 muldvds1 15467 dvds2add 15476 dvds2sub 15477 dvdstr 15479 initoeu2lem2 17104 pospropd 17573 csrgbinom 18986 smadiadetglem2 20965 ismbf3d 23938 mbfi1flimlem 24006 colinearalg 26379 frusgrnn0 27036 2wlkond 27398 2pthond 27403 2pthon3v 27404 umgr2adedgwlkonALT 27408 vdgn1frgrv2 27759 frgr2wwlkeqm 27794 bnj967 31825 bnj1110 31860 subgrwlk 31981 cgr3permute3 33111 cgr3com 33117 brofs2 33141 areacirclem4 34529 paddasslem14 36513 lhpexle1 36688 cdlemk19w 37652 ismrc 38796 iocinico 39316 gneispb 39979 fourierdlem113 42060 sigaras 42668 sigarms 42669 leltletr 43023 lincresunit3lem3 44023 lincresunit3 44030 |
Copyright terms: Public domain | W3C validator |