![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
2 | 1 | 3adant2 1132 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adantl2 1168 3adantr2 1171 fpropnf1 7285 cfcof 10310 axcclem 10493 enqeq 10970 leltletr 11348 ltleletr 11350 ixxssixx 13397 prodmolem2 15967 prodmo 15968 zprod 15969 muldvds1 16314 dvds2add 16323 dvds2sub 16324 dvdstr 16327 initoeu2lem2 18056 pospropd 18368 mndissubm 18816 csrgbinom 20225 smadiadetglem2 22668 ismbf3d 25679 mbfi1flimlem 25747 colinearalg 28915 frusgrnn0 29579 2wlkond 29947 2pthond 29952 2pthon3v 29953 umgr2adedgwlkonALT 29957 vdgn1frgrv2 30305 frgr2wwlkeqm 30340 bnj967 34937 bnj1110 34974 subgrwlk 35115 cgr3permute3 36026 cgr3com 36032 brofs2 36056 bj-idreseq 37141 areacirclem4 37696 paddasslem14 39813 lhpexle1 39988 cdlemk19w 40952 ismrc 42690 iocinico 43202 gneispb 44122 fourierdlem113 46207 sigaras 46843 sigarms 46844 plusmod5ne 47320 gpgusgralem 47984 lincresunit3lem3 48364 lincresunit3 48371 |
Copyright terms: Public domain | W3C validator |