| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3simpb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜒)) | |
| 2 | 1 | 3adant2 1131 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adantl2 1168 3adantr2 1171 fpropnf1 7208 cfcof 10187 axcclem 10370 enqeq 10847 leltletr 11225 ltleletr 11227 ixxssixx 13280 prodmolem2 15860 prodmo 15861 zprod 15862 muldvds1 16209 dvds2add 16219 dvds2sub 16220 dvdstr 16223 initoeu2lem2 17940 pospropd 18249 mndissubm 18699 csrgbinom 20135 smadiadetglem2 22575 ismbf3d 25571 mbfi1flimlem 25639 colinearalg 28873 frusgrnn0 29535 2wlkond 29900 2pthond 29905 2pthon3v 29906 umgr2adedgwlkonALT 29910 vdgn1frgrv2 30258 frgr2wwlkeqm 30293 bnj967 34914 bnj1110 34951 subgrwlk 35107 cgr3permute3 36023 cgr3com 36029 brofs2 36053 bj-idreseq 37138 areacirclem4 37693 paddasslem14 39815 lhpexle1 39990 cdlemk19w 40954 ismrc 42677 iocinico 43188 gneispb 44107 fourierdlem113 46204 sigaras 46840 sigarms 46841 plusmod5ne 47333 gpgusgralem 48044 lincresunit3lem3 48463 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |