MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem9 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem9 18077
Description: Lemma 9 for funcsetcestrc 18078. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcsetcestrclem9
StepHypRef Expression
1 funcsetcestrc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑈 ∈ WUni)
4 eqid 2733 . . . . . 6 (Hom ‘𝑆) = (Hom ‘𝑆)
5 funcsetcestrc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
61, 2setcbas 17993 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝑆))
75, 6eqtr4id 2787 . . . . . . . . . 10 (𝜑𝐶 = 𝑈)
87eleq2d 2819 . . . . . . . . 9 (𝜑 → (𝑋𝐶𝑋𝑈))
98biimpcd 249 . . . . . . . 8 (𝑋𝐶 → (𝜑𝑋𝑈))
1093ad2ant1 1133 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑋𝑈))
1110impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑋𝑈)
127eleq2d 2819 . . . . . . . . 9 (𝜑 → (𝑌𝐶𝑌𝑈))
1312biimpcd 249 . . . . . . . 8 (𝑌𝐶 → (𝜑𝑌𝑈))
14133ad2ant2 1134 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑌𝑈))
1514impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑌𝑈)
161, 3, 4, 11, 15setchom 17995 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌m 𝑋))
1716eleq2d 2819 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ↔ 𝐻 ∈ (𝑌m 𝑋)))
187eleq2d 2819 . . . . . . . . 9 (𝜑 → (𝑍𝐶𝑍𝑈))
1918biimpcd 249 . . . . . . . 8 (𝑍𝐶 → (𝜑𝑍𝑈))
20193ad2ant3 1135 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑍𝑈))
2120impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑍𝑈)
221, 3, 4, 15, 21setchom 17995 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑌(Hom ‘𝑆)𝑍) = (𝑍m 𝑌))
2322eleq2d 2819 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍) ↔ 𝐾 ∈ (𝑍m 𝑌)))
2417, 23anbi12d 632 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) ↔ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))))
25 elmapi 8782 . . . . . . . . 9 (𝐾 ∈ (𝑍m 𝑌) → 𝐾:𝑌𝑍)
26 elmapi 8782 . . . . . . . . 9 (𝐻 ∈ (𝑌m 𝑋) → 𝐻:𝑋𝑌)
27 fco 6683 . . . . . . . . 9 ((𝐾:𝑌𝑍𝐻:𝑋𝑌) → (𝐾𝐻):𝑋𝑍)
2825, 26, 27syl2anr 597 . . . . . . . 8 ((𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌)) → (𝐾𝐻):𝑋𝑍)
2928adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾𝐻):𝑋𝑍)
30 elmapg 8772 . . . . . . . . . 10 ((𝑍𝐶𝑋𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3130ancoms 458 . . . . . . . . 9 ((𝑋𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
32313adant2 1131 . . . . . . . 8 ((𝑋𝐶𝑌𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3332ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3429, 33mpbird 257 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾𝐻) ∈ (𝑍m 𝑋))
35 fvresi 7116 . . . . . 6 ((𝐾𝐻) ∈ (𝑍m 𝑋) → (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
3634, 35syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
37 funcsetcestrc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
38 funcsetcestrc.o . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
39 funcsetcestrc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
401, 5, 37, 2, 38, 39funcsetcestrclem5 18073 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
41403adantr2 1171 . . . . . . 7 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
4241adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
433adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑈 ∈ WUni)
44 eqid 2733 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
4511adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑋𝑈)
4615adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑌𝑈)
4721adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑍𝑈)
4826ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐻:𝑋𝑌)
4925ad2antll 729 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐾:𝑌𝑍)
501, 43, 44, 45, 46, 47, 48, 49setcco 17998 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻) = (𝐾𝐻))
5142, 50fveq12d 6838 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)))
52 funcsetcestrc.e . . . . . . 7 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2733 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
541, 5, 37, 2, 38funcsetcestrclem2 18069 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
55543ad2antr1 1189 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) ∈ 𝑈)
5655adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑋) ∈ 𝑈)
571, 5, 37, 2, 38funcsetcestrclem2 18069 . . . . . . . . 9 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
58573ad2antr2 1190 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) ∈ 𝑈)
5958adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑌) ∈ 𝑈)
601, 5, 37, 2, 38funcsetcestrclem2 18069 . . . . . . . . 9 ((𝜑𝑍𝐶) → (𝐹𝑍) ∈ 𝑈)
61603ad2antr3 1191 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) ∈ 𝑈)
6261adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑍) ∈ 𝑈)
63 eqid 2733 . . . . . . 7 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
64 eqid 2733 . . . . . . 7 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
65 eqid 2733 . . . . . . 7 (Base‘(𝐹𝑍)) = (Base‘(𝐹𝑍))
66 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝜑)
67 3simpa 1148 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑋𝐶𝑌𝐶))
6867ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑋𝐶𝑌𝐶))
69 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐻 ∈ (𝑌m 𝑋))
701, 5, 37, 2, 38, 39funcsetcestrclem6 18074 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶) ∧ 𝐻 ∈ (𝑌m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7166, 68, 69, 70syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
721, 5, 37funcsetcestrclem1 18068 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
73723ad2antr1 1189 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
7473fveq2d 6835 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
75 eqid 2733 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
76751strbas 17142 . . . . . . . . . . . . . 14 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
7776eqcomd 2739 . . . . . . . . . . . . 13 (𝑋𝐶 → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
78773ad2ant1 1133 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
7978adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
8074, 79eqtrd 2768 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
8180adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑋)) = 𝑋)
821, 5, 37funcsetcestrclem1 18068 . . . . . . . . . . . . 13 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
83823ad2antr2 1190 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
8483fveq2d 6835 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
85 eqid 2733 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
86851strbas 17142 . . . . . . . . . . . . . 14 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
8786eqcomd 2739 . . . . . . . . . . . . 13 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
88873ad2ant2 1134 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
8988adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
9084, 89eqtrd 2768 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
9190adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑌)) = 𝑌)
9271, 81, 91feq123d 6648 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)) ↔ 𝐻:𝑋𝑌))
9348, 92mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)))
94 3simpc 1150 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑌𝐶𝑍𝐶))
9594ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑌𝐶𝑍𝐶))
96 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐾 ∈ (𝑍m 𝑌))
971, 5, 37, 2, 38, 39funcsetcestrclem6 18074 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐶𝑍𝐶) ∧ 𝐾 ∈ (𝑍m 𝑌)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9866, 95, 96, 97syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
991, 5, 37funcsetcestrclem1 18068 . . . . . . . . . . . . 13 ((𝜑𝑍𝐶) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
100993ad2antr3 1191 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
101100fveq2d 6835 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
102 eqid 2733 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑍⟩} = {⟨(Base‘ndx), 𝑍⟩}
1031021strbas 17142 . . . . . . . . . . . . . 14 (𝑍𝐶𝑍 = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
104103eqcomd 2739 . . . . . . . . . . . . 13 (𝑍𝐶 → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
1051043ad2ant3 1135 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
106105adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
107101, 106eqtrd 2768 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = 𝑍)
108107adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑍)) = 𝑍)
10998, 91, 108feq123d 6648 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)) ↔ 𝐾:𝑌𝑍))
11049, 109mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)))
11152, 43, 53, 56, 59, 62, 63, 64, 65, 93, 110estrcco 18044 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
11298, 71coeq12d 5810 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
113111, 112eqtrd 2768 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
11436, 51, 1133eqtr4d 2778 . . . 4 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
115114ex 412 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
11624, 115sylbid 240 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
1171163impia 1117 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {csn 4577  cop 4583  cmpt 5176   I cid 5515  cres 5623  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  ωcom 7805  m cmap 8759  WUnicwun 10602  ndxcnx 17111  Basecbs 17127  Hom chom 17179  compcco 17180  SetCatcsetc 17990  ExtStrCatcestrc 18036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-wun 10604  df-ni 10774  df-pli 10775  df-mi 10776  df-lti 10777  df-plpq 10810  df-mpq 10811  df-ltpq 10812  df-enq 10813  df-nq 10814  df-erq 10815  df-plq 10816  df-mq 10817  df-1nq 10818  df-rq 10819  df-ltnq 10820  df-np 10883  df-plp 10885  df-ltp 10887  df-enr 10957  df-nr 10958  df-c 11023  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-setc 17991  df-estrc 18037
This theorem is referenced by:  funcsetcestrc  18078
  Copyright terms: Public domain W3C validator