MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem9 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem9 17880
Description: Lemma 9 for funcsetcestrc 17881. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcsetcestrclem9
StepHypRef Expression
1 funcsetcestrc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑈 ∈ WUni)
4 eqid 2738 . . . . . 6 (Hom ‘𝑆) = (Hom ‘𝑆)
5 funcsetcestrc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
61, 2setcbas 17793 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝑆))
75, 6eqtr4id 2797 . . . . . . . . . 10 (𝜑𝐶 = 𝑈)
87eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑋𝐶𝑋𝑈))
98biimpcd 248 . . . . . . . 8 (𝑋𝐶 → (𝜑𝑋𝑈))
1093ad2ant1 1132 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑋𝑈))
1110impcom 408 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑋𝑈)
127eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑌𝐶𝑌𝑈))
1312biimpcd 248 . . . . . . . 8 (𝑌𝐶 → (𝜑𝑌𝑈))
14133ad2ant2 1133 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑌𝑈))
1514impcom 408 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑌𝑈)
161, 3, 4, 11, 15setchom 17795 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌m 𝑋))
1716eleq2d 2824 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ↔ 𝐻 ∈ (𝑌m 𝑋)))
187eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑍𝐶𝑍𝑈))
1918biimpcd 248 . . . . . . . 8 (𝑍𝐶 → (𝜑𝑍𝑈))
20193ad2ant3 1134 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑍𝑈))
2120impcom 408 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑍𝑈)
221, 3, 4, 15, 21setchom 17795 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑌(Hom ‘𝑆)𝑍) = (𝑍m 𝑌))
2322eleq2d 2824 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍) ↔ 𝐾 ∈ (𝑍m 𝑌)))
2417, 23anbi12d 631 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) ↔ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))))
25 elmapi 8637 . . . . . . . . 9 (𝐾 ∈ (𝑍m 𝑌) → 𝐾:𝑌𝑍)
26 elmapi 8637 . . . . . . . . 9 (𝐻 ∈ (𝑌m 𝑋) → 𝐻:𝑋𝑌)
27 fco 6624 . . . . . . . . 9 ((𝐾:𝑌𝑍𝐻:𝑋𝑌) → (𝐾𝐻):𝑋𝑍)
2825, 26, 27syl2anr 597 . . . . . . . 8 ((𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌)) → (𝐾𝐻):𝑋𝑍)
2928adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾𝐻):𝑋𝑍)
30 elmapg 8628 . . . . . . . . . 10 ((𝑍𝐶𝑋𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3130ancoms 459 . . . . . . . . 9 ((𝑋𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
32313adant2 1130 . . . . . . . 8 ((𝑋𝐶𝑌𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3332ad2antlr 724 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3429, 33mpbird 256 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾𝐻) ∈ (𝑍m 𝑋))
35 fvresi 7045 . . . . . 6 ((𝐾𝐻) ∈ (𝑍m 𝑋) → (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
3634, 35syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
37 funcsetcestrc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
38 funcsetcestrc.o . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
39 funcsetcestrc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
401, 5, 37, 2, 38, 39funcsetcestrclem5 17876 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
41403adantr2 1169 . . . . . . 7 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
4241adantr 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
433adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑈 ∈ WUni)
44 eqid 2738 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
4511adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑋𝑈)
4615adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑌𝑈)
4721adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑍𝑈)
4826ad2antrl 725 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐻:𝑋𝑌)
4925ad2antll 726 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐾:𝑌𝑍)
501, 43, 44, 45, 46, 47, 48, 49setcco 17798 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻) = (𝐾𝐻))
5142, 50fveq12d 6781 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)))
52 funcsetcestrc.e . . . . . . 7 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2738 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
541, 5, 37, 2, 38funcsetcestrclem2 17872 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
55543ad2antr1 1187 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) ∈ 𝑈)
5655adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑋) ∈ 𝑈)
571, 5, 37, 2, 38funcsetcestrclem2 17872 . . . . . . . . 9 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
58573ad2antr2 1188 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) ∈ 𝑈)
5958adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑌) ∈ 𝑈)
601, 5, 37, 2, 38funcsetcestrclem2 17872 . . . . . . . . 9 ((𝜑𝑍𝐶) → (𝐹𝑍) ∈ 𝑈)
61603ad2antr3 1189 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) ∈ 𝑈)
6261adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑍) ∈ 𝑈)
63 eqid 2738 . . . . . . 7 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
64 eqid 2738 . . . . . . 7 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
65 eqid 2738 . . . . . . 7 (Base‘(𝐹𝑍)) = (Base‘(𝐹𝑍))
66 simpll 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝜑)
67 3simpa 1147 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑋𝐶𝑌𝐶))
6867ad2antlr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑋𝐶𝑌𝐶))
69 simprl 768 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐻 ∈ (𝑌m 𝑋))
701, 5, 37, 2, 38, 39funcsetcestrclem6 17877 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶) ∧ 𝐻 ∈ (𝑌m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7166, 68, 69, 70syl3anc 1370 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
721, 5, 37funcsetcestrclem1 17871 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
73723ad2antr1 1187 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
7473fveq2d 6778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
75 eqid 2738 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
76751strbas 16929 . . . . . . . . . . . . . 14 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
7776eqcomd 2744 . . . . . . . . . . . . 13 (𝑋𝐶 → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
78773ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
7978adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
8074, 79eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
8180adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑋)) = 𝑋)
821, 5, 37funcsetcestrclem1 17871 . . . . . . . . . . . . 13 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
83823ad2antr2 1188 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
8483fveq2d 6778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
85 eqid 2738 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
86851strbas 16929 . . . . . . . . . . . . . 14 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
8786eqcomd 2744 . . . . . . . . . . . . 13 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
88873ad2ant2 1133 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
8988adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
9084, 89eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
9190adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑌)) = 𝑌)
9271, 81, 91feq123d 6589 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)) ↔ 𝐻:𝑋𝑌))
9348, 92mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)))
94 3simpc 1149 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑌𝐶𝑍𝐶))
9594ad2antlr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑌𝐶𝑍𝐶))
96 simprr 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐾 ∈ (𝑍m 𝑌))
971, 5, 37, 2, 38, 39funcsetcestrclem6 17877 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐶𝑍𝐶) ∧ 𝐾 ∈ (𝑍m 𝑌)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9866, 95, 96, 97syl3anc 1370 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
991, 5, 37funcsetcestrclem1 17871 . . . . . . . . . . . . 13 ((𝜑𝑍𝐶) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
100993ad2antr3 1189 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
101100fveq2d 6778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
102 eqid 2738 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑍⟩} = {⟨(Base‘ndx), 𝑍⟩}
1031021strbas 16929 . . . . . . . . . . . . . 14 (𝑍𝐶𝑍 = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
104103eqcomd 2744 . . . . . . . . . . . . 13 (𝑍𝐶 → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
1051043ad2ant3 1134 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
106105adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
107101, 106eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = 𝑍)
108107adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑍)) = 𝑍)
10998, 91, 108feq123d 6589 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)) ↔ 𝐾:𝑌𝑍))
11049, 109mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)))
11152, 43, 53, 56, 59, 62, 63, 64, 65, 93, 110estrcco 17846 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
11298, 71coeq12d 5773 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
113111, 112eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
11436, 51, 1133eqtr4d 2788 . . . 4 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
115114ex 413 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
11624, 115sylbid 239 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
1171163impia 1116 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {csn 4561  cop 4567  cmpt 5157   I cid 5488  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  m cmap 8615  WUnicwun 10456  ndxcnx 16894  Basecbs 16912  Hom chom 16973  compcco 16974  SetCatcsetc 17790  ExtStrCatcestrc 17838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-wun 10458  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-plp 10739  df-ltp 10741  df-enr 10811  df-nr 10812  df-c 10877  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-setc 17791  df-estrc 17839
This theorem is referenced by:  funcsetcestrc  17881
  Copyright terms: Public domain W3C validator