MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem9 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem9 17796
Description: Lemma 9 for funcsetcestrc 17797. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcsetcestrclem9
StepHypRef Expression
1 funcsetcestrc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑈 ∈ WUni)
4 eqid 2738 . . . . . 6 (Hom ‘𝑆) = (Hom ‘𝑆)
5 funcsetcestrc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
61, 2setcbas 17709 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝑆))
75, 6eqtr4id 2798 . . . . . . . . . 10 (𝜑𝐶 = 𝑈)
87eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑋𝐶𝑋𝑈))
98biimpcd 248 . . . . . . . 8 (𝑋𝐶 → (𝜑𝑋𝑈))
1093ad2ant1 1131 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑋𝑈))
1110impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑋𝑈)
127eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑌𝐶𝑌𝑈))
1312biimpcd 248 . . . . . . . 8 (𝑌𝐶 → (𝜑𝑌𝑈))
14133ad2ant2 1132 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑌𝑈))
1514impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑌𝑈)
161, 3, 4, 11, 15setchom 17711 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌m 𝑋))
1716eleq2d 2824 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ↔ 𝐻 ∈ (𝑌m 𝑋)))
187eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑍𝐶𝑍𝑈))
1918biimpcd 248 . . . . . . . 8 (𝑍𝐶 → (𝜑𝑍𝑈))
20193ad2ant3 1133 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑍𝑈))
2120impcom 407 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑍𝑈)
221, 3, 4, 15, 21setchom 17711 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑌(Hom ‘𝑆)𝑍) = (𝑍m 𝑌))
2322eleq2d 2824 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍) ↔ 𝐾 ∈ (𝑍m 𝑌)))
2417, 23anbi12d 630 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) ↔ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))))
25 elmapi 8595 . . . . . . . . 9 (𝐾 ∈ (𝑍m 𝑌) → 𝐾:𝑌𝑍)
26 elmapi 8595 . . . . . . . . 9 (𝐻 ∈ (𝑌m 𝑋) → 𝐻:𝑋𝑌)
27 fco 6608 . . . . . . . . 9 ((𝐾:𝑌𝑍𝐻:𝑋𝑌) → (𝐾𝐻):𝑋𝑍)
2825, 26, 27syl2anr 596 . . . . . . . 8 ((𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌)) → (𝐾𝐻):𝑋𝑍)
2928adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾𝐻):𝑋𝑍)
30 elmapg 8586 . . . . . . . . . 10 ((𝑍𝐶𝑋𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3130ancoms 458 . . . . . . . . 9 ((𝑋𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
32313adant2 1129 . . . . . . . 8 ((𝑋𝐶𝑌𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3332ad2antlr 723 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝐾𝐻) ∈ (𝑍m 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3429, 33mpbird 256 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾𝐻) ∈ (𝑍m 𝑋))
35 fvresi 7027 . . . . . 6 ((𝐾𝐻) ∈ (𝑍m 𝑋) → (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
3634, 35syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
37 funcsetcestrc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
38 funcsetcestrc.o . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
39 funcsetcestrc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
401, 5, 37, 2, 38, 39funcsetcestrclem5 17792 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
41403adantr2 1168 . . . . . . 7 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
4241adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑋𝐺𝑍) = ( I ↾ (𝑍m 𝑋)))
433adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑈 ∈ WUni)
44 eqid 2738 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
4511adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑋𝑈)
4615adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑌𝑈)
4721adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝑍𝑈)
4826ad2antrl 724 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐻:𝑋𝑌)
4925ad2antll 725 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐾:𝑌𝑍)
501, 43, 44, 45, 46, 47, 48, 49setcco 17714 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻) = (𝐾𝐻))
5142, 50fveq12d 6763 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (( I ↾ (𝑍m 𝑋))‘(𝐾𝐻)))
52 funcsetcestrc.e . . . . . . 7 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2738 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
541, 5, 37, 2, 38funcsetcestrclem2 17788 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
55543ad2antr1 1186 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) ∈ 𝑈)
5655adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑋) ∈ 𝑈)
571, 5, 37, 2, 38funcsetcestrclem2 17788 . . . . . . . . 9 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
58573ad2antr2 1187 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) ∈ 𝑈)
5958adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑌) ∈ 𝑈)
601, 5, 37, 2, 38funcsetcestrclem2 17788 . . . . . . . . 9 ((𝜑𝑍𝐶) → (𝐹𝑍) ∈ 𝑈)
61603ad2antr3 1188 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) ∈ 𝑈)
6261adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝐹𝑍) ∈ 𝑈)
63 eqid 2738 . . . . . . 7 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
64 eqid 2738 . . . . . . 7 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
65 eqid 2738 . . . . . . 7 (Base‘(𝐹𝑍)) = (Base‘(𝐹𝑍))
66 simpll 763 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝜑)
67 3simpa 1146 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑋𝐶𝑌𝐶))
6867ad2antlr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑋𝐶𝑌𝐶))
69 simprl 767 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐻 ∈ (𝑌m 𝑋))
701, 5, 37, 2, 38, 39funcsetcestrclem6 17793 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶) ∧ 𝐻 ∈ (𝑌m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7166, 68, 69, 70syl3anc 1369 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
721, 5, 37funcsetcestrclem1 17787 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
73723ad2antr1 1186 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
7473fveq2d 6760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
75 eqid 2738 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
76751strbas 16856 . . . . . . . . . . . . . 14 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
7776eqcomd 2744 . . . . . . . . . . . . 13 (𝑋𝐶 → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
78773ad2ant1 1131 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
7978adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
8074, 79eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
8180adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑋)) = 𝑋)
821, 5, 37funcsetcestrclem1 17787 . . . . . . . . . . . . 13 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
83823ad2antr2 1187 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
8483fveq2d 6760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
85 eqid 2738 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
86851strbas 16856 . . . . . . . . . . . . . 14 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
8786eqcomd 2744 . . . . . . . . . . . . 13 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
88873ad2ant2 1132 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
8988adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
9084, 89eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
9190adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑌)) = 𝑌)
9271, 81, 91feq123d 6573 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)) ↔ 𝐻:𝑋𝑌))
9348, 92mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)))
94 3simpc 1148 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑌𝐶𝑍𝐶))
9594ad2antlr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (𝑌𝐶𝑍𝐶))
96 simprr 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → 𝐾 ∈ (𝑍m 𝑌))
971, 5, 37, 2, 38, 39funcsetcestrclem6 17793 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐶𝑍𝐶) ∧ 𝐾 ∈ (𝑍m 𝑌)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9866, 95, 96, 97syl3anc 1369 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
991, 5, 37funcsetcestrclem1 17787 . . . . . . . . . . . . 13 ((𝜑𝑍𝐶) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
100993ad2antr3 1188 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
101100fveq2d 6760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
102 eqid 2738 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑍⟩} = {⟨(Base‘ndx), 𝑍⟩}
1031021strbas 16856 . . . . . . . . . . . . . 14 (𝑍𝐶𝑍 = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
104103eqcomd 2744 . . . . . . . . . . . . 13 (𝑍𝐶 → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
1051043ad2ant3 1133 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
106105adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
107101, 106eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = 𝑍)
108107adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (Base‘(𝐹𝑍)) = 𝑍)
10998, 91, 108feq123d 6573 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)) ↔ 𝐾:𝑌𝑍))
11049, 109mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)))
11152, 43, 53, 56, 59, 62, 63, 64, 65, 93, 110estrcco 17762 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
11298, 71coeq12d 5762 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
113111, 112eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
11436, 51, 1133eqtr4d 2788 . . . 4 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
115114ex 412 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑌m 𝑋) ∧ 𝐾 ∈ (𝑍m 𝑌)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
11624, 115sylbid 239 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
1171163impia 1115 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {csn 4558  cop 4564  cmpt 5153   I cid 5479  cres 5582  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687  m cmap 8573  WUnicwun 10387  ndxcnx 16822  Basecbs 16840  Hom chom 16899  compcco 16900  SetCatcsetc 17706  ExtStrCatcestrc 17754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-wun 10389  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-plp 10670  df-ltp 10672  df-enr 10742  df-nr 10743  df-c 10808  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-setc 17707  df-estrc 17755
This theorem is referenced by:  funcsetcestrc  17797
  Copyright terms: Public domain W3C validator