MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmdi Structured version   Visualization version   GIF version

Theorem nvmdi 30627
Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmdi.1 𝑋 = (BaseSet‘𝑈)
nvmdi.3 𝑀 = ( −𝑣𝑈)
nvmdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvmdi ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)))

Proof of Theorem nvmdi
StepHypRef Expression
1 simpr1 1195 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝐴 ∈ ℂ)
2 simpr2 1196 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 neg1cn 12147 . . . . . . 7 -1 ∈ ℂ
4 nvmdi.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 nvmdi.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
64, 5nvscl 30605 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
73, 6mp3an2 1451 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
873ad2antr3 1191 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (-1𝑆𝐶) ∈ 𝑋)
91, 2, 83jca 1128 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋))
10 eqid 2729 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
114, 10, 5nvdi 30609 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))))
129, 11syldan 591 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))))
134, 5nvscom 30608 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
143, 13mp3anr2 1461 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
15143adantr2 1171 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
1615oveq2d 7385 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
1712, 16eqtrd 2764 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
18 nvmdi.3 . . . . 5 𝑀 = ( −𝑣𝑈)
194, 10, 5, 18nvmval 30621 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑀𝐶) = (𝐵( +𝑣𝑈)(-1𝑆𝐶)))
20193adant3r1 1183 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐵𝑀𝐶) = (𝐵( +𝑣𝑈)(-1𝑆𝐶)))
2120oveq2d 7385 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))))
22 simpl 482 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝑈 ∈ NrmCVec)
234, 5nvscl 30605 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
24233adant3r3 1185 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆𝐵) ∈ 𝑋)
254, 5nvscl 30605 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐶𝑋) → (𝐴𝑆𝐶) ∈ 𝑋)
26253adant3r2 1184 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆𝐶) ∈ 𝑋)
274, 10, 5, 18nvmval 30621 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑆𝐵) ∈ 𝑋 ∧ (𝐴𝑆𝐶) ∈ 𝑋) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
2822, 24, 26, 27syl3anc 1373 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
2917, 21, 283eqtr4d 2774 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045  -cneg 11382  NrmCVeccnv 30563   +𝑣 cpv 30564  BaseSetcba 30565   ·𝑠OLD cns 30566  𝑣 cnsb 30568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-neg 11384  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579
This theorem is referenced by:  smcnlem  30676  minvecolem2  30854
  Copyright terms: Public domain W3C validator