Proof of Theorem nvmdi
Step | Hyp | Ref
| Expression |
1 | | simpr1 1192 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ ℂ) |
2 | | simpr2 1193 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
3 | | neg1cn 12017 |
. . . . . . 7
⊢ -1 ∈
ℂ |
4 | | nvmdi.1 |
. . . . . . . 8
⊢ 𝑋 = (BaseSet‘𝑈) |
5 | | nvmdi.4 |
. . . . . . . 8
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
6 | 4, 5 | nvscl 28889 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈
ℂ ∧ 𝐶 ∈
𝑋) → (-1𝑆𝐶) ∈ 𝑋) |
7 | 3, 6 | mp3an2 1447 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋) → (-1𝑆𝐶) ∈ 𝑋) |
8 | 7 | 3ad2antr3 1188 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (-1𝑆𝐶) ∈ 𝑋) |
9 | 1, 2, 8 | 3jca 1126 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋)) |
10 | | eqid 2738 |
. . . . 5
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
11 | 4, 10, 5 | nvdi 28893 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(𝐴𝑆(-1𝑆𝐶)))) |
12 | 9, 11 | syldan 590 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(𝐴𝑆(-1𝑆𝐶)))) |
13 | 4, 5 | nvscom 28892 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ -1 ∈
ℂ ∧ 𝐶 ∈
𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶))) |
14 | 3, 13 | mp3anr2 1457 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶))) |
15 | 14 | 3adantr2 1168 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶))) |
16 | 15 | oveq2d 7271 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(𝐴𝑆(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
17 | 12, 16 | eqtrd 2778 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
18 | | nvmdi.3 |
. . . . 5
⊢ 𝑀 = ( −𝑣
‘𝑈) |
19 | 4, 10, 5, 18 | nvmval 28905 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑀𝐶) = (𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) |
20 | 19 | 3adant3r1 1180 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑀𝐶) = (𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) |
21 | 20 | oveq2d 7271 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶)))) |
22 | | simpl 482 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) |
23 | 4, 5 | nvscl 28889 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) |
24 | 23 | 3adant3r3 1182 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆𝐵) ∈ 𝑋) |
25 | 4, 5 | nvscl 28889 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋) → (𝐴𝑆𝐶) ∈ 𝑋) |
26 | 25 | 3adant3r2 1181 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆𝐶) ∈ 𝑋) |
27 | 4, 10, 5, 18 | nvmval 28905 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑆𝐵) ∈ 𝑋 ∧ (𝐴𝑆𝐶) ∈ 𝑋) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
28 | 22, 24, 26, 27 | syl3anc 1369 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
29 | 17, 21, 28 | 3eqtr4d 2788 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶))) |