MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmdi Structured version   Visualization version   GIF version

Theorem nvmdi 30628
Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmdi.1 𝑋 = (BaseSet‘𝑈)
nvmdi.3 𝑀 = ( −𝑣𝑈)
nvmdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvmdi ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)))

Proof of Theorem nvmdi
StepHypRef Expression
1 simpr1 1195 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝐴 ∈ ℂ)
2 simpr2 1196 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 neg1cn 12110 . . . . . . 7 -1 ∈ ℂ
4 nvmdi.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 nvmdi.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
64, 5nvscl 30606 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
73, 6mp3an2 1451 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
873ad2antr3 1191 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (-1𝑆𝐶) ∈ 𝑋)
91, 2, 83jca 1128 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋))
10 eqid 2731 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
114, 10, 5nvdi 30610 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))))
129, 11syldan 591 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))))
134, 5nvscom 30609 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
143, 13mp3anr2 1461 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
15143adantr2 1171 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶)))
1615oveq2d 7362 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)( +𝑣𝑈)(𝐴𝑆(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
1712, 16eqtrd 2766 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
18 nvmdi.3 . . . . 5 𝑀 = ( −𝑣𝑈)
194, 10, 5, 18nvmval 30622 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑀𝐶) = (𝐵( +𝑣𝑈)(-1𝑆𝐶)))
20193adant3r1 1183 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐵𝑀𝐶) = (𝐵( +𝑣𝑈)(-1𝑆𝐶)))
2120oveq2d 7362 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = (𝐴𝑆(𝐵( +𝑣𝑈)(-1𝑆𝐶))))
22 simpl 482 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → 𝑈 ∈ NrmCVec)
234, 5nvscl 30606 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
24233adant3r3 1185 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆𝐵) ∈ 𝑋)
254, 5nvscl 30606 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐶𝑋) → (𝐴𝑆𝐶) ∈ 𝑋)
26253adant3r2 1184 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆𝐶) ∈ 𝑋)
274, 10, 5, 18nvmval 30622 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑆𝐵) ∈ 𝑋 ∧ (𝐴𝑆𝐶) ∈ 𝑋) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
2822, 24, 26, 27syl3anc 1373 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣𝑈)(-1𝑆(𝐴𝑆𝐶))))
2917, 21, 283eqtr4d 2776 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007  -cneg 11345  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  𝑣 cnsb 30569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580
This theorem is referenced by:  smcnlem  30677  minvecolem2  30855
  Copyright terms: Public domain W3C validator