| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fnsuppres 8195 addsubeq4 11502 muleqadd 11886 mulle0b 12118 adddivflid 13840 om2uzlti 13973 summodnegmod 16311 qnumdenbi 16768 dprdf11 20011 lvecvscan2 21078 mdetunilem9 22563 elfilss 23819 mbfmulc2lem 25605 itg2seq 25700 itg2cnlem2 25720 chpchtsum 27187 bposlem7 27258 lgsdilem 27292 lgsne0 27303 colhp 28754 axcontlem7 28954 pjnorm2 31713 cdj3lem1 32420 receqid 32727 zringfrac 33574 ply1dg1rt 33597 zrhchr 34010 bj-gabima 36963 dochfln0 41501 mapdindp 41695 stgredgiun 47937 |
| Copyright terms: Public domain | W3C validator |