![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: fnsuppres 8215 addsubeq4 11521 muleqadd 11905 mulle0b 12137 adddivflid 13855 om2uzlti 13988 summodnegmod 16321 qnumdenbi 16778 dprdf11 20058 lvecvscan2 21132 mdetunilem9 22642 elfilss 23900 mbfmulc2lem 25696 itg2seq 25792 itg2cnlem2 25812 chpchtsum 27278 bposlem7 27349 lgsdilem 27383 lgsne0 27394 colhp 28793 axcontlem7 29000 pjnorm2 31756 cdj3lem1 32463 zringfrac 33562 ply1dg1rt 33584 zrhchr 33937 bj-gabima 36923 dochfln0 41460 mapdindp 41654 stgredgiun 47861 |
Copyright terms: Public domain | W3C validator |