Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitr2d 279 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fnsuppres 7991 addsubeq4 11219 muleqadd 11602 mulle0b 11829 adddivflid 13519 om2uzlti 13651 summodnegmod 15977 qnumdenbi 16429 dprdf11 19607 lvecvscan2 20355 mdetunilem9 21750 elfilss 23008 mbfmulc2lem 24792 itg2seq 24888 itg2cnlem2 24908 chpchtsum 26348 bposlem7 26419 lgsdilem 26453 lgsne0 26464 colhp 27112 axcontlem7 27319 pjnorm2 30068 cdj3lem1 30775 zrhchr 31905 bj-gabima 35107 dochfln0 39470 mapdindp 39664 |
Copyright terms: Public domain | W3C validator |