MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr2rd Structured version   Visualization version   GIF version

Theorem 3bitr2rd 308
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2d.1 (𝜑 → (𝜓𝜒))
3bitr2d.2 (𝜑 → (𝜃𝜒))
3bitr2d.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitr2rd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitr2rd
StepHypRef Expression
1 3bitr2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 3bitr2d.2 . . 3 (𝜑 → (𝜃𝜒))
31, 2bitr4d 282 . 2 (𝜑 → (𝜓𝜃))
4 3bitr2d.3 . 2 (𝜑 → (𝜃𝜏))
53, 4bitr2d 280 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fnsuppres  8188  addsubeq4  11495  muleqadd  11879  mulle0b  12111  adddivflid  13833  om2uzlti  13966  summodnegmod  16304  qnumdenbi  16761  dprdf11  20004  lvecvscan2  21071  mdetunilem9  22556  elfilss  23812  mbfmulc2lem  25598  itg2seq  25693  itg2cnlem2  25713  chpchtsum  27180  bposlem7  27251  lgsdilem  27285  lgsne0  27296  colhp  28695  axcontlem7  28895  pjnorm2  31654  cdj3lem1  32361  receqid  32668  zringfrac  33515  ply1dg1rt  33538  zrhchr  33951  bj-gabima  36904  dochfln0  41442  mapdindp  41636  stgredgiun  47918
  Copyright terms: Public domain W3C validator