MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr2rd Structured version   Visualization version   GIF version

Theorem 3bitr2rd 308
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2d.1 (𝜑 → (𝜓𝜒))
3bitr2d.2 (𝜑 → (𝜃𝜒))
3bitr2d.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitr2rd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitr2rd
StepHypRef Expression
1 3bitr2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 3bitr2d.2 . . 3 (𝜑 → (𝜃𝜒))
31, 2bitr4d 282 . 2 (𝜑 → (𝜓𝜃))
4 3bitr2d.3 . 2 (𝜑 → (𝜃𝜏))
53, 4bitr2d 280 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fnsuppres  8195  addsubeq4  11502  muleqadd  11886  mulle0b  12118  adddivflid  13840  om2uzlti  13973  summodnegmod  16311  qnumdenbi  16768  dprdf11  20011  lvecvscan2  21078  mdetunilem9  22563  elfilss  23819  mbfmulc2lem  25605  itg2seq  25700  itg2cnlem2  25720  chpchtsum  27187  bposlem7  27258  lgsdilem  27292  lgsne0  27303  colhp  28754  axcontlem7  28954  pjnorm2  31713  cdj3lem1  32420  receqid  32727  zringfrac  33574  ply1dg1rt  33597  zrhchr  34010  bj-gabima  36963  dochfln0  41501  mapdindp  41695  stgredgiun  47937
  Copyright terms: Public domain W3C validator