| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fnsuppres 8116 addsubeq4 11370 muleqadd 11756 mulle0b 11988 adddivflid 13717 om2uzlti 13852 summodnegmod 16192 qnumdenbi 16650 dprdf11 19932 lvecvscan2 21044 mdetunilem9 22530 elfilss 23786 mbfmulc2lem 25570 itg2seq 25665 itg2cnlem2 25685 chpchtsum 27152 bposlem7 27223 lgsdilem 27257 lgsne0 27268 colhp 28743 axcontlem7 28943 pjnorm2 31699 cdj3lem1 32406 receqid 32720 zringfrac 33511 ply1dg1rt 33535 zrhchr 33979 bj-gabima 36974 dochfln0 41516 mapdindp 41710 stgredgiun 47989 |
| Copyright terms: Public domain | W3C validator |