![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fnsuppres 8171 addsubeq4 11473 muleqadd 11856 mulle0b 12083 adddivflid 13781 om2uzlti 13913 summodnegmod 16229 qnumdenbi 16681 dprdf11 19937 lvecvscan2 20955 mdetunilem9 22446 elfilss 23704 mbfmulc2lem 25500 itg2seq 25596 itg2cnlem2 25616 chpchtsum 27071 bposlem7 27142 lgsdilem 27176 lgsne0 27187 colhp 28493 axcontlem7 28700 pjnorm2 31452 cdj3lem1 32159 zrhchr 33448 bj-gabima 36311 dochfln0 40842 mapdindp 41036 |
Copyright terms: Public domain | W3C validator |