Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fnsuppres 8038 addsubeq4 11286 muleqadd 11669 mulle0b 11896 adddivflid 13588 om2uzlti 13720 summodnegmod 16045 qnumdenbi 16497 dprdf11 19675 lvecvscan2 20423 mdetunilem9 21818 elfilss 23076 mbfmulc2lem 24860 itg2seq 24956 itg2cnlem2 24976 chpchtsum 26416 bposlem7 26487 lgsdilem 26521 lgsne0 26532 colhp 27180 axcontlem7 27387 pjnorm2 30138 cdj3lem1 30845 zrhchr 31975 bj-gabima 35176 dochfln0 39691 mapdindp 39885 |
Copyright terms: Public domain | W3C validator |