| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fnsuppres 8170 addsubeq4 11436 muleqadd 11822 mulle0b 12054 adddivflid 13780 om2uzlti 13915 summodnegmod 16256 qnumdenbi 16714 dprdf11 19955 lvecvscan2 21022 mdetunilem9 22507 elfilss 23763 mbfmulc2lem 25548 itg2seq 25643 itg2cnlem2 25663 chpchtsum 27130 bposlem7 27201 lgsdilem 27235 lgsne0 27246 colhp 28697 axcontlem7 28897 pjnorm2 31656 cdj3lem1 32363 receqid 32668 zringfrac 33525 ply1dg1rt 33548 zrhchr 33964 bj-gabima 36928 dochfln0 41471 mapdindp 41665 stgredgiun 47954 |
| Copyright terms: Public domain | W3C validator |