![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: fnsuppres 8232 addsubeq4 11551 muleqadd 11934 mulle0b 12166 adddivflid 13869 om2uzlti 14001 summodnegmod 16335 qnumdenbi 16791 dprdf11 20067 lvecvscan2 21137 mdetunilem9 22647 elfilss 23905 mbfmulc2lem 25701 itg2seq 25797 itg2cnlem2 25817 chpchtsum 27281 bposlem7 27352 lgsdilem 27386 lgsne0 27397 colhp 28796 axcontlem7 29003 pjnorm2 31759 cdj3lem1 32466 zringfrac 33547 ply1dg1rt 33569 zrhchr 33922 bj-gabima 36906 dochfln0 41434 mapdindp 41628 |
Copyright terms: Public domain | W3C validator |