MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr2rd Structured version   Visualization version   GIF version

Theorem 3bitr2rd 308
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2d.1 (𝜑 → (𝜓𝜒))
3bitr2d.2 (𝜑 → (𝜃𝜒))
3bitr2d.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitr2rd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitr2rd
StepHypRef Expression
1 3bitr2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 3bitr2d.2 . . 3 (𝜑 → (𝜃𝜒))
31, 2bitr4d 282 . 2 (𝜑 → (𝜓𝜃))
4 3bitr2d.3 . 2 (𝜑 → (𝜃𝜏))
53, 4bitr2d 280 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fnsuppres  8131  addsubeq4  11397  muleqadd  11783  mulle0b  12015  adddivflid  13741  om2uzlti  13876  summodnegmod  16216  qnumdenbi  16674  dprdf11  19923  lvecvscan2  21038  mdetunilem9  22524  elfilss  23780  mbfmulc2lem  25565  itg2seq  25660  itg2cnlem2  25680  chpchtsum  27147  bposlem7  27218  lgsdilem  27252  lgsne0  27263  colhp  28734  axcontlem7  28934  pjnorm2  31690  cdj3lem1  32397  receqid  32707  zringfrac  33510  ply1dg1rt  33534  zrhchr  33960  bj-gabima  36933  dochfln0  41476  mapdindp  41670  stgredgiun  47962
  Copyright terms: Public domain W3C validator