![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 281 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitr2d 279 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fnsuppres 8179 addsubeq4 11480 muleqadd 11863 mulle0b 12090 adddivflid 13788 om2uzlti 13920 summodnegmod 16235 qnumdenbi 16685 dprdf11 19935 lvecvscan2 20871 mdetunilem9 22343 elfilss 23601 mbfmulc2lem 25397 itg2seq 25493 itg2cnlem2 25513 chpchtsum 26955 bposlem7 27026 lgsdilem 27060 lgsne0 27071 colhp 28285 axcontlem7 28492 pjnorm2 31244 cdj3lem1 31951 zrhchr 33251 bj-gabima 36124 dochfln0 40652 mapdindp 40846 |
Copyright terms: Public domain | W3C validator |