| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 282 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitr2d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fnsuppres 8147 addsubeq4 11412 muleqadd 11798 mulle0b 12030 adddivflid 13756 om2uzlti 13891 summodnegmod 16232 qnumdenbi 16690 dprdf11 19931 lvecvscan2 20998 mdetunilem9 22483 elfilss 23739 mbfmulc2lem 25524 itg2seq 25619 itg2cnlem2 25639 chpchtsum 27106 bposlem7 27177 lgsdilem 27211 lgsne0 27222 colhp 28673 axcontlem7 28873 pjnorm2 31629 cdj3lem1 32336 receqid 32641 zringfrac 33498 ply1dg1rt 33521 zrhchr 33937 bj-gabima 36901 dochfln0 41444 mapdindp 41638 stgredgiun 47930 |
| Copyright terms: Public domain | W3C validator |