MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfilss Structured version   Visualization version   GIF version

Theorem elfilss 22481
Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfilss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐹 ↔ ∃𝑡𝐹 𝑡𝐴))
Distinct variable groups:   𝑡,𝐹   𝑡,𝑋   𝑡,𝐴

Proof of Theorem elfilss
StepHypRef Expression
1 ibar 532 . . 3 (𝐴𝑋 → (∃𝑡𝐹 𝑡𝐴 ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
21adantl 485 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐹 𝑡𝐴 ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
3 filfbas 22453 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
4 elfg 22476 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
53, 4syl 17 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
65adantr 484 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
7 fgfil 22480 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
87eleq2d 2875 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴𝐹))
98adantr 484 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴𝐹))
102, 6, 93bitr2rd 311 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐹 ↔ ∃𝑡𝐹 𝑡𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wrex 3107  wss 3881  cfv 6324  (class class class)co 7135  fBascfbas 20079  filGencfg 20080  Filcfil 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-fbas 20088  df-fg 20089  df-fil 22451
This theorem is referenced by:  trfil3  22493
  Copyright terms: Public domain W3C validator