MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfilss Structured version   Visualization version   GIF version

Theorem elfilss 21893
Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfilss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐹 ↔ ∃𝑡𝐹 𝑡𝐴))
Distinct variable groups:   𝑡,𝐹   𝑡,𝑋   𝑡,𝐴

Proof of Theorem elfilss
StepHypRef Expression
1 ibar 520 . . 3 (𝐴𝑋 → (∃𝑡𝐹 𝑡𝐴 ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
21adantl 469 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐹 𝑡𝐴 ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
3 filfbas 21865 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
4 elfg 21888 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
53, 4syl 17 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
65adantr 468 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
7 fgfil 21892 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
87eleq2d 2871 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴𝐹))
98adantr 468 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴𝐹))
102, 6, 93bitr2rd 299 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐹 ↔ ∃𝑡𝐹 𝑡𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wcel 2156  wrex 3097  wss 3769  cfv 6101  (class class class)co 6874  fBascfbas 19942  filGencfg 19943  Filcfil 21862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-fbas 19951  df-fg 19952  df-fil 21863
This theorem is referenced by:  trfil3  21905
  Copyright terms: Public domain W3C validator