| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfilss | Structured version Visualization version GIF version | ||
| Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfilss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝐴 ⊆ 𝑋 → (∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 3 | filfbas 23763 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 4 | elfg 23786 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 7 | fgfil 23790 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
| 8 | 7 | eleq2d 2817 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ 𝐹)) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ 𝐹)) |
| 10 | 2, 6, 9 | 3bitr2rd 308 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 fBascfbas 21279 filGencfg 21280 Filcfil 23760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-fbas 21288 df-fg 21289 df-fil 23761 |
| This theorem is referenced by: trfil3 23803 |
| Copyright terms: Public domain | W3C validator |