| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfilss | Structured version Visualization version GIF version | ||
| Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfilss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝐴 ⊆ 𝑋 → (∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 3 | filfbas 23856 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 4 | elfg 23879 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 7 | fgfil 23883 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
| 8 | 7 | eleq2d 2827 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ 𝐹)) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ 𝐹)) |
| 10 | 2, 6, 9 | 3bitr2rd 308 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 fBascfbas 21352 filGencfg 21353 Filcfil 23853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-fbas 21361 df-fg 21362 df-fil 23854 |
| This theorem is referenced by: trfil3 23896 |
| Copyright terms: Public domain | W3C validator |