| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfilss | Structured version Visualization version GIF version | ||
| Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfilss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝐴 ⊆ 𝑋 → (∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 3 | filfbas 23742 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 4 | elfg 23765 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴))) |
| 7 | fgfil 23769 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
| 8 | 7 | eleq2d 2815 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ 𝐹)) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴 ∈ 𝐹)) |
| 10 | 2, 6, 9 | 3bitr2rd 308 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 fBascfbas 21259 filGencfg 21260 Filcfil 23739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-fbas 21268 df-fg 21269 df-fil 23740 |
| This theorem is referenced by: trfil3 23782 |
| Copyright terms: Public domain | W3C validator |