MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muleqadd Structured version   Visualization version   GIF version

Theorem muleqadd 11905
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 11211 . . . . 5 1 ∈ ℂ
2 mulsub 11704 . . . . . 6 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
31, 2mpanr2 704 . . . . 5 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
41, 3mpanl2 701 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
51mulridi 11263 . . . . . . 7 (1 · 1) = 1
65oveq2i 7442 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
76a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1))
8 mulrid 11257 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
9 mulrid 11257 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
108, 9oveqan12d 7450 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
117, 10oveq12d 7449 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) = (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)))
12 mulcl 11237 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
13 addcl 11235 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
14 addsub 11517 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
151, 14mp3an2 1448 . . . . 5 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1612, 13, 15syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
174, 11, 163eqtrd 2779 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1817eqeq1d 2737 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 1) · (𝐵 − 1)) = 1 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
1912, 13subcld 11618 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ)
20 0cn 11251 . . . . 5 0 ∈ ℂ
21 addcan2 11444 . . . . 5 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2220, 1, 21mp3an23 1452 . . . 4 (((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2319, 22syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
241addlidi 11447 . . . 4 (0 + 1) = 1
2524eqeq2i 2748 . . 3 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1)
2623, 25bitr3di 286 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
2712, 13subeq0ad 11628 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 + 𝐵)))
2818, 26, 273bitr2rd 308 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493
This theorem is referenced by:  conjmul  11982
  Copyright terms: Public domain W3C validator