MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddivflid Structured version   Visualization version   GIF version

Theorem adddivflid 13855
Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
adddivflid ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))

Proof of Theorem adddivflid
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nn0nndivcl 12596 . . . . 5 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℝ)
323adant1 1129 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℝ)
41, 3jca 511 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℝ))
5 flbi2 13854 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℝ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
64, 5syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
7 nn0re 12533 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
8 nn0ge0 12549 . . . . . . 7 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
97, 8jca 511 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
10 nnre 12271 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
11 nngt0 12295 . . . . . . 7 (𝐶 ∈ ℕ → 0 < 𝐶)
1210, 11jca 511 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
139, 12anim12i 613 . . . . 5 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)))
14133adant1 1129 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)))
15 divge0 12135 . . . 4 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 / 𝐶))
1614, 15syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → 0 ≤ (𝐵 / 𝐶))
1716biantrurd 532 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
18 nnrp 13044 . . . . 5 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+)
197, 18anim12i 613 . . . 4 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
20193adant1 1129 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
21 divlt1lt 13102 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶))
2220, 21syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶))
236, 17, 223bitr2rd 308 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  +crp 13032  cfl 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829
This theorem is referenced by:  2lgslem3a  27455  2lgslem3b  27456  2lgslem3c  27457  2lgslem3d  27458
  Copyright terms: Public domain W3C validator