| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddivflid | Structured version Visualization version GIF version | ||
| Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| adddivflid | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ) | |
| 2 | nn0nndivcl 12578 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℝ) | |
| 3 | 2 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℝ) |
| 4 | 1, 3 | jca 511 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℝ)) |
| 5 | flbi2 13839 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℝ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) |
| 7 | nn0re 12515 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
| 8 | nn0ge0 12531 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 0 ≤ 𝐵) | |
| 9 | 7, 8 | jca 511 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
| 10 | nnre 12252 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℝ) | |
| 11 | nngt0 12276 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ → 0 < 𝐶) | |
| 12 | 10, 11 | jca 511 | . . . . . 6 ⊢ (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
| 13 | 9, 12 | anim12i 613 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶))) |
| 14 | 13 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶))) |
| 15 | divge0 12116 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 / 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐵 / 𝐶)) |
| 17 | 16 | biantrurd 532 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) |
| 18 | nnrp 13025 | . . . . 5 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+) | |
| 19 | 7, 18 | anim12i 613 | . . . 4 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+)) |
| 20 | 19 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+)) |
| 21 | divlt1lt 13083 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶)) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶)) |
| 23 | 6, 17, 22 | 3bitr2rd 308 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 ≤ cle 11275 / cdiv 11899 ℕcn 12245 ℕ0cn0 12506 ℤcz 12593 ℝ+crp 13013 ⌊cfl 13812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fl 13814 |
| This theorem is referenced by: 2lgslem3a 27364 2lgslem3b 27365 2lgslem3c 27366 2lgslem3d 27367 |
| Copyright terms: Public domain | W3C validator |