MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddivflid Structured version   Visualization version   GIF version

Theorem adddivflid 13779
Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
adddivflid ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))

Proof of Theorem adddivflid
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nn0nndivcl 12539 . . . . 5 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℝ)
323adant1 1130 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℝ)
41, 3jca 512 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℝ))
5 flbi2 13778 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℝ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
64, 5syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
7 nn0re 12477 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
8 nn0ge0 12493 . . . . . . 7 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
97, 8jca 512 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
10 nnre 12215 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
11 nngt0 12239 . . . . . . 7 (𝐶 ∈ ℕ → 0 < 𝐶)
1210, 11jca 512 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
139, 12anim12i 613 . . . . 5 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)))
14133adant1 1130 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)))
15 divge0 12079 . . . 4 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 / 𝐶))
1614, 15syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → 0 ≤ (𝐵 / 𝐶))
1716biantrurd 533 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
18 nnrp 12981 . . . . 5 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+)
197, 18anim12i 613 . . . 4 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
20193adant1 1130 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
21 divlt1lt 13039 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶))
2220, 21syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶))
236, 17, 223bitr2rd 307 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cle 11245   / cdiv 11867  cn 12208  0cn0 12468  cz 12554  +crp 12970  cfl 13751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753
This theorem is referenced by:  2lgslem3a  26888  2lgslem3b  26889  2lgslem3c  26890  2lgslem3d  26891
  Copyright terms: Public domain W3C validator