MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf11 Structured version   Visualization version   GIF version

Theorem dprdf11 19939
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdf11.4 (𝜑𝐻𝑊)
Assertion
Ref Expression
dprdf11 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdf11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
5 eqid 2733 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19928 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffnd 6657 . . 3 (𝜑𝐹 Fn 𝐼)
8 dprdf11.4 . . . . 5 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19928 . . . 4 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffnd 6657 . . 3 (𝜑𝐻 Fn 𝐼)
11 eqfnfv 6970 . . 3 ((𝐹 Fn 𝐼𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
127, 10, 11syl2anc 584 . 2 (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
13 eldprdi.0 . . . 4 0 = (0g𝐺)
14 eqid 2733 . . . . . 6 (-g𝐺) = (-g𝐺)
1513, 1, 2, 3, 4, 8, 14dprdfsub 19937 . . . . 5 (𝜑 → ((𝐹f (-g𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻))))
1615simpld 494 . . . 4 (𝜑 → (𝐹f (-g𝐺)𝐻) ∈ 𝑊)
1713, 1, 2, 3, 16dprdfeq0 19938 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ (𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 )))
1815simprd 495 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)))
1918eqeq1d 2735 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ))
202, 3dprddomcld 19917 . . . . . 6 (𝜑𝐼 ∈ V)
21 fvexd 6843 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
22 fvexd 6843 . . . . . 6 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ V)
236feqmptd 6896 . . . . . 6 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
249feqmptd 6896 . . . . . 6 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
2520, 21, 22, 23, 24offval2 7636 . . . . 5 (𝜑 → (𝐹f (-g𝐺)𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))))
2625eqeq1d 2735 . . . 4 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 )))
27 ovex 7385 . . . . . . 7 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
2827rgenw 3052 . . . . . 6 𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
29 mpteqb 6954 . . . . . 6 (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ))
3028, 29ax-mp 5 . . . . 5 ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 )
31 dprdgrp 19921 . . . . . . . . 9 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
322, 31syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
3332adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
346ffvelcdmda 7023 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
359ffvelcdmda 7023 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (Base‘𝐺))
365, 13, 14grpsubeq0 18941 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺) ∧ (𝐻𝑥) ∈ (Base‘𝐺)) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3733, 34, 35, 36syl3anc 1373 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3837ralbidva 3154 . . . . 5 (𝜑 → (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
3930, 38bitrid 283 . . . 4 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4026, 39bitrd 279 . . 3 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4117, 19, 403bitr3d 309 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
425dprdssv 19932 . . . 4 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4313, 1, 2, 3, 4eldprdi 19934 . . . 4 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3928 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4513, 1, 2, 3, 8eldprdi 19934 . . . 4 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3928 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 13, 14grpsubeq0 18941 . . 3 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4832, 44, 46, 47syl3anc 1373 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4912, 41, 483bitr2rd 308 1 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437   class class class wbr 5093  cmpt 5174  dom cdm 5619   Fn wfn 6481  cfv 6486  (class class class)co 7352  f cof 7614  Xcixp 8827   finSupp cfsupp 9252  Basecbs 17122  0gc0g 17345   Σg cgsu 17346  Grpcgrp 18848  -gcsg 18850   DProd cdprd 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-cmn 19696  df-dprd 19911
This theorem is referenced by:  dmdprdsplitlem  19953  dpjeq  19975
  Copyright terms: Public domain W3C validator