![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdf11 | Structured version Visualization version GIF version |
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
dprdf11.4 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
Ref | Expression |
---|---|
dprdf11 | ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
2 | eldprdi.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
3 | eldprdi.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
4 | eldprdi.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
5 | eqid 2795 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | 1, 2, 3, 4, 5 | dprdff 18851 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
7 | 6 | ffnd 6383 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
8 | dprdf11.4 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
9 | 1, 2, 3, 8, 5 | dprdff 18851 | . . . 4 ⊢ (𝜑 → 𝐻:𝐼⟶(Base‘𝐺)) |
10 | 9 | ffnd 6383 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
11 | eqfnfv 6667 | . . 3 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) | |
12 | 7, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
13 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
14 | eqid 2795 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | 13, 1, 2, 3, 4, 8, 14 | dprdfsub 18860 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘𝑓 (-g‘𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘𝑓 (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)))) |
16 | 15 | simpld 495 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 (-g‘𝐺)𝐻) ∈ 𝑊) |
17 | 13, 1, 2, 3, 16 | dprdfeq0 18861 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘𝑓 (-g‘𝐺)𝐻)) = 0 ↔ (𝐹 ∘𝑓 (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
18 | 15 | simprd 496 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻))) |
19 | 18 | eqeq1d 2797 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘𝑓 (-g‘𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 )) |
20 | 2, 3 | dprddomcld 18840 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
21 | fvexd 6553 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
22 | fvexd 6553 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ V) | |
23 | 6 | feqmptd 6601 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
24 | 9 | feqmptd 6601 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐼 ↦ (𝐻‘𝑥))) |
25 | 20, 21, 22, 23, 24 | offval2 7284 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘𝑓 (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)))) |
26 | 25 | eqeq1d 2797 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘𝑓 (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
27 | ovex 7048 | . . . . . . 7 ⊢ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V | |
28 | 27 | rgenw 3117 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V |
29 | mpteqb 6653 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 )) | |
30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ) |
31 | dprdgrp 18844 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
32 | 2, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ Grp) |
33 | 32 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
34 | 6 | ffvelrnda 6716 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
35 | 9 | ffvelrnda 6716 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ (Base‘𝐺)) |
36 | 5, 13, 14 | grpsubeq0 17942 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺) ∧ (𝐻‘𝑥) ∈ (Base‘𝐺)) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
37 | 33, 34, 35, 36 | syl3anc 1364 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
38 | 37 | ralbidva 3163 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
39 | 30, 38 | syl5bb 284 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
40 | 26, 39 | bitrd 280 | . . 3 ⊢ (𝜑 → ((𝐹 ∘𝑓 (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
41 | 17, 19, 40 | 3bitr3d 310 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
42 | 5 | dprdssv 18855 | . . . 4 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
43 | 13, 1, 2, 3, 4 | eldprdi 18857 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
44 | 42, 43 | sseldi 3887 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺)) |
45 | 13, 1, 2, 3, 8 | eldprdi 18857 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆)) |
46 | 42, 45 | sseldi 3887 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) |
47 | 5, 13, 14 | grpsubeq0 17942 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
48 | 32, 44, 46, 47 | syl3anc 1364 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
49 | 12, 41, 48 | 3bitr2rd 309 | 1 ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 {crab 3109 Vcvv 3437 class class class wbr 4962 ↦ cmpt 5041 dom cdm 5443 Fn wfn 6220 ‘cfv 6225 (class class class)co 7016 ∘𝑓 cof 7265 Xcixp 8310 finSupp cfsupp 8679 Basecbs 16312 0gc0g 16542 Σg cgsu 16543 Grpcgrp 17861 -gcsg 17863 DProd cdprd 18832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-om 7437 df-1st 7545 df-2nd 7546 df-supp 7682 df-tpos 7743 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-ixp 8311 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fsupp 8680 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-fzo 12884 df-seq 13220 df-hash 13541 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-0g 16544 df-gsum 16545 df-mre 16686 df-mrc 16687 df-acs 16689 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-mhm 17774 df-submnd 17775 df-grp 17864 df-minusg 17865 df-sbg 17866 df-mulg 17982 df-subg 18030 df-ghm 18097 df-gim 18140 df-cntz 18188 df-oppg 18215 df-cmn 18635 df-dprd 18834 |
This theorem is referenced by: dmdprdsplitlem 18876 dpjeq 18898 |
Copyright terms: Public domain | W3C validator |