| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf11 | Structured version Visualization version GIF version | ||
| Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
| eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| dprdf11.4 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dprdf11 | ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 2 | eldprdi.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | eldprdi.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 4 | eldprdi.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | dprdff 19944 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 7 | 6 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
| 8 | dprdf11.4 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 9 | 1, 2, 3, 8, 5 | dprdff 19944 | . . . 4 ⊢ (𝜑 → 𝐻:𝐼⟶(Base‘𝐺)) |
| 10 | 9 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 11 | eqfnfv 7003 | . . 3 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) | |
| 12 | 7, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 13 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 14 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 15 | 13, 1, 2, 3, 4, 8, 14 | dprdfsub 19953 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)))) |
| 16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊) |
| 17 | 13, 1, 2, 3, 16 | dprdfeq0 19954 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 18 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻))) |
| 19 | 18 | eqeq1d 2731 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 )) |
| 20 | 2, 3 | dprddomcld 19933 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 21 | fvexd 6873 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
| 22 | fvexd 6873 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ V) | |
| 23 | 6 | feqmptd 6929 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 24 | 9 | feqmptd 6929 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐼 ↦ (𝐻‘𝑥))) |
| 25 | 20, 21, 22, 23, 24 | offval2 7673 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)))) |
| 26 | 25 | eqeq1d 2731 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 27 | ovex 7420 | . . . . . . 7 ⊢ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V | |
| 28 | 27 | rgenw 3048 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V |
| 29 | mpteqb 6987 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 )) | |
| 30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ) |
| 31 | dprdgrp 19937 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 32 | 2, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 33 | 32 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
| 34 | 6 | ffvelcdmda 7056 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
| 35 | 9 | ffvelcdmda 7056 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ (Base‘𝐺)) |
| 36 | 5, 13, 14 | grpsubeq0 18958 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺) ∧ (𝐻‘𝑥) ∈ (Base‘𝐺)) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 37 | 33, 34, 35, 36 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 38 | 37 | ralbidva 3154 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 39 | 30, 38 | bitrid 283 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 40 | 26, 39 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 41 | 17, 19, 40 | 3bitr3d 309 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 42 | 5 | dprdssv 19948 | . . . 4 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
| 43 | 13, 1, 2, 3, 4 | eldprdi 19950 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
| 44 | 42, 43 | sselid 3944 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺)) |
| 45 | 13, 1, 2, 3, 8 | eldprdi 19950 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆)) |
| 46 | 42, 45 | sselid 3944 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) |
| 47 | 5, 13, 14 | grpsubeq0 18958 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 48 | 32, 44, 46, 47 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 49 | 12, 41, 48 | 3bitr2rd 308 | 1 ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Xcixp 8870 finSupp cfsupp 9312 Basecbs 17179 0gc0g 17402 Σg cgsu 17403 Grpcgrp 18865 -gcsg 18867 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-cmn 19712 df-dprd 19927 |
| This theorem is referenced by: dmdprdsplitlem 19969 dpjeq 19991 |
| Copyright terms: Public domain | W3C validator |