Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdf11 | Structured version Visualization version GIF version |
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
dprdf11.4 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
Ref | Expression |
---|---|
dprdf11 | ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
2 | eldprdi.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
3 | eldprdi.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
4 | eldprdi.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
5 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | 1, 2, 3, 4, 5 | dprdff 19530 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
7 | 6 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
8 | dprdf11.4 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
9 | 1, 2, 3, 8, 5 | dprdff 19530 | . . . 4 ⊢ (𝜑 → 𝐻:𝐼⟶(Base‘𝐺)) |
10 | 9 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
11 | eqfnfv 6891 | . . 3 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) | |
12 | 7, 10, 11 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
13 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
14 | eqid 2738 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | 13, 1, 2, 3, 4, 8, 14 | dprdfsub 19539 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)))) |
16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊) |
17 | 13, 1, 2, 3, 16 | dprdfeq0 19540 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
18 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻))) |
19 | 18 | eqeq1d 2740 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 )) |
20 | 2, 3 | dprddomcld 19519 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
21 | fvexd 6771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
22 | fvexd 6771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ V) | |
23 | 6 | feqmptd 6819 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
24 | 9 | feqmptd 6819 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐼 ↦ (𝐻‘𝑥))) |
25 | 20, 21, 22, 23, 24 | offval2 7531 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)))) |
26 | 25 | eqeq1d 2740 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
27 | ovex 7288 | . . . . . . 7 ⊢ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V | |
28 | 27 | rgenw 3075 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V |
29 | mpteqb 6876 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 )) | |
30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ) |
31 | dprdgrp 19523 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
32 | 2, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ Grp) |
33 | 32 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
34 | 6 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
35 | 9 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ (Base‘𝐺)) |
36 | 5, 13, 14 | grpsubeq0 18576 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺) ∧ (𝐻‘𝑥) ∈ (Base‘𝐺)) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
37 | 33, 34, 35, 36 | syl3anc 1369 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
38 | 37 | ralbidva 3119 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
39 | 30, 38 | syl5bb 282 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
40 | 26, 39 | bitrd 278 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
41 | 17, 19, 40 | 3bitr3d 308 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
42 | 5 | dprdssv 19534 | . . . 4 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
43 | 13, 1, 2, 3, 4 | eldprdi 19536 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
44 | 42, 43 | sselid 3915 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺)) |
45 | 13, 1, 2, 3, 8 | eldprdi 19536 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆)) |
46 | 42, 45 | sselid 3915 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) |
47 | 5, 13, 14 | grpsubeq0 18576 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
48 | 32, 44, 46, 47 | syl3anc 1369 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
49 | 12, 41, 48 | 3bitr2rd 307 | 1 ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Xcixp 8643 finSupp cfsupp 9058 Basecbs 16840 0gc0g 17067 Σg cgsu 17068 Grpcgrp 18492 -gcsg 18494 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-cmn 19303 df-dprd 19513 |
This theorem is referenced by: dmdprdsplitlem 19555 dpjeq 19577 |
Copyright terms: Public domain | W3C validator |