MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf11 Structured version   Visualization version   GIF version

Theorem dprdf11 19854
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdf11.4 (𝜑𝐻𝑊)
Assertion
Ref Expression
dprdf11 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdf11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
5 eqid 2732 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19843 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffnd 6706 . . 3 (𝜑𝐹 Fn 𝐼)
8 dprdf11.4 . . . . 5 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19843 . . . 4 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffnd 6706 . . 3 (𝜑𝐻 Fn 𝐼)
11 eqfnfv 7019 . . 3 ((𝐹 Fn 𝐼𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
127, 10, 11syl2anc 584 . 2 (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
13 eldprdi.0 . . . 4 0 = (0g𝐺)
14 eqid 2732 . . . . . 6 (-g𝐺) = (-g𝐺)
1513, 1, 2, 3, 4, 8, 14dprdfsub 19852 . . . . 5 (𝜑 → ((𝐹f (-g𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻))))
1615simpld 495 . . . 4 (𝜑 → (𝐹f (-g𝐺)𝐻) ∈ 𝑊)
1713, 1, 2, 3, 16dprdfeq0 19853 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ (𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 )))
1815simprd 496 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)))
1918eqeq1d 2734 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ))
202, 3dprddomcld 19832 . . . . . 6 (𝜑𝐼 ∈ V)
21 fvexd 6894 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
22 fvexd 6894 . . . . . 6 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ V)
236feqmptd 6947 . . . . . 6 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
249feqmptd 6947 . . . . . 6 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
2520, 21, 22, 23, 24offval2 7674 . . . . 5 (𝜑 → (𝐹f (-g𝐺)𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))))
2625eqeq1d 2734 . . . 4 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 )))
27 ovex 7427 . . . . . . 7 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
2827rgenw 3065 . . . . . 6 𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
29 mpteqb 7004 . . . . . 6 (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ))
3028, 29ax-mp 5 . . . . 5 ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 )
31 dprdgrp 19836 . . . . . . . . 9 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
322, 31syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
3332adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
346ffvelcdmda 7072 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
359ffvelcdmda 7072 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (Base‘𝐺))
365, 13, 14grpsubeq0 18885 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺) ∧ (𝐻𝑥) ∈ (Base‘𝐺)) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3733, 34, 35, 36syl3anc 1371 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3837ralbidva 3175 . . . . 5 (𝜑 → (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
3930, 38bitrid 282 . . . 4 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4026, 39bitrd 278 . . 3 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4117, 19, 403bitr3d 308 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
425dprdssv 19847 . . . 4 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4313, 1, 2, 3, 4eldprdi 19849 . . . 4 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3977 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4513, 1, 2, 3, 8eldprdi 19849 . . . 4 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3977 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 13, 14grpsubeq0 18885 . . 3 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4832, 44, 46, 47syl3anc 1371 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4912, 41, 483bitr2rd 307 1 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  {crab 3432  Vcvv 3474   class class class wbr 5142  cmpt 5225  dom cdm 5670   Fn wfn 6528  cfv 6533  (class class class)co 7394  f cof 7652  Xcixp 8876   finSupp cfsupp 9346  Basecbs 17128  0gc0g 17369   Σg cgsu 17370  Grpcgrp 18796  -gcsg 18798   DProd cdprd 19824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-tpos 8195  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-n0 12457  df-z 12543  df-uz 12807  df-fz 13469  df-fzo 13612  df-seq 13951  df-hash 14275  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-0g 17371  df-gsum 17372  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-mhm 18649  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-mulg 18925  df-subg 18977  df-ghm 19058  df-gim 19101  df-cntz 19149  df-oppg 19176  df-cmn 19616  df-dprd 19826
This theorem is referenced by:  dmdprdsplitlem  19868  dpjeq  19890
  Copyright terms: Public domain W3C validator