MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf11 Structured version   Visualization version   GIF version

Theorem dprdf11 19934
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdf11.4 (𝜑𝐻𝑊)
Assertion
Ref Expression
dprdf11 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdf11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
5 eqid 2732 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19923 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffnd 6718 . . 3 (𝜑𝐹 Fn 𝐼)
8 dprdf11.4 . . . . 5 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19923 . . . 4 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffnd 6718 . . 3 (𝜑𝐻 Fn 𝐼)
11 eqfnfv 7032 . . 3 ((𝐹 Fn 𝐼𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
127, 10, 11syl2anc 584 . 2 (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
13 eldprdi.0 . . . 4 0 = (0g𝐺)
14 eqid 2732 . . . . . 6 (-g𝐺) = (-g𝐺)
1513, 1, 2, 3, 4, 8, 14dprdfsub 19932 . . . . 5 (𝜑 → ((𝐹f (-g𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻))))
1615simpld 495 . . . 4 (𝜑 → (𝐹f (-g𝐺)𝐻) ∈ 𝑊)
1713, 1, 2, 3, 16dprdfeq0 19933 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ (𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 )))
1815simprd 496 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)))
1918eqeq1d 2734 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ))
202, 3dprddomcld 19912 . . . . . 6 (𝜑𝐼 ∈ V)
21 fvexd 6906 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
22 fvexd 6906 . . . . . 6 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ V)
236feqmptd 6960 . . . . . 6 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
249feqmptd 6960 . . . . . 6 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
2520, 21, 22, 23, 24offval2 7692 . . . . 5 (𝜑 → (𝐹f (-g𝐺)𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))))
2625eqeq1d 2734 . . . 4 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 )))
27 ovex 7444 . . . . . . 7 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
2827rgenw 3065 . . . . . 6 𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
29 mpteqb 7017 . . . . . 6 (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ))
3028, 29ax-mp 5 . . . . 5 ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 )
31 dprdgrp 19916 . . . . . . . . 9 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
322, 31syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
3332adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
346ffvelcdmda 7086 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
359ffvelcdmda 7086 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (Base‘𝐺))
365, 13, 14grpsubeq0 18945 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺) ∧ (𝐻𝑥) ∈ (Base‘𝐺)) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3733, 34, 35, 36syl3anc 1371 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3837ralbidva 3175 . . . . 5 (𝜑 → (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
3930, 38bitrid 282 . . . 4 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4026, 39bitrd 278 . . 3 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4117, 19, 403bitr3d 308 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
425dprdssv 19927 . . . 4 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4313, 1, 2, 3, 4eldprdi 19929 . . . 4 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3980 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4513, 1, 2, 3, 8eldprdi 19929 . . . 4 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3980 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 13, 14grpsubeq0 18945 . . 3 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4832, 44, 46, 47syl3anc 1371 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4912, 41, 483bitr2rd 307 1 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  {crab 3432  Vcvv 3474   class class class wbr 5148  cmpt 5231  dom cdm 5676   Fn wfn 6538  cfv 6543  (class class class)co 7411  f cof 7670  Xcixp 8893   finSupp cfsupp 9363  Basecbs 17148  0gc0g 17389   Σg cgsu 17390  Grpcgrp 18855  -gcsg 18857   DProd cdprd 19904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-gsum 17392  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18987  df-subg 19039  df-ghm 19128  df-gim 19173  df-cntz 19222  df-oppg 19251  df-cmn 19691  df-dprd 19906
This theorem is referenced by:  dmdprdsplitlem  19948  dpjeq  19970
  Copyright terms: Public domain W3C validator