| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf11 | Structured version Visualization version GIF version | ||
| Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
| eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| dprdf11.4 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dprdf11 | ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 2 | eldprdi.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | eldprdi.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 4 | eldprdi.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 5 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | dprdff 19928 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 7 | 6 | ffnd 6657 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
| 8 | dprdf11.4 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 9 | 1, 2, 3, 8, 5 | dprdff 19928 | . . . 4 ⊢ (𝜑 → 𝐻:𝐼⟶(Base‘𝐺)) |
| 10 | 9 | ffnd 6657 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 11 | eqfnfv 6970 | . . 3 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) | |
| 12 | 7, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 13 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 14 | eqid 2733 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 15 | 13, 1, 2, 3, 4, 8, 14 | dprdfsub 19937 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)))) |
| 16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊) |
| 17 | 13, 1, 2, 3, 16 | dprdfeq0 19938 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 18 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻))) |
| 19 | 18 | eqeq1d 2735 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 )) |
| 20 | 2, 3 | dprddomcld 19917 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 21 | fvexd 6843 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
| 22 | fvexd 6843 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ V) | |
| 23 | 6 | feqmptd 6896 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 24 | 9 | feqmptd 6896 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐼 ↦ (𝐻‘𝑥))) |
| 25 | 20, 21, 22, 23, 24 | offval2 7636 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)))) |
| 26 | 25 | eqeq1d 2735 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 27 | ovex 7385 | . . . . . . 7 ⊢ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V | |
| 28 | 27 | rgenw 3052 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V |
| 29 | mpteqb 6954 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 )) | |
| 30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ) |
| 31 | dprdgrp 19921 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 32 | 2, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 33 | 32 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
| 34 | 6 | ffvelcdmda 7023 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
| 35 | 9 | ffvelcdmda 7023 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ (Base‘𝐺)) |
| 36 | 5, 13, 14 | grpsubeq0 18941 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺) ∧ (𝐻‘𝑥) ∈ (Base‘𝐺)) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 37 | 33, 34, 35, 36 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 38 | 37 | ralbidva 3154 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 39 | 30, 38 | bitrid 283 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 40 | 26, 39 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 41 | 17, 19, 40 | 3bitr3d 309 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 42 | 5 | dprdssv 19932 | . . . 4 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
| 43 | 13, 1, 2, 3, 4 | eldprdi 19934 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
| 44 | 42, 43 | sselid 3928 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺)) |
| 45 | 13, 1, 2, 3, 8 | eldprdi 19934 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆)) |
| 46 | 42, 45 | sselid 3928 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) |
| 47 | 5, 13, 14 | grpsubeq0 18941 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 48 | 32, 44, 46, 47 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 49 | 12, 41, 48 | 3bitr2rd 308 | 1 ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 dom cdm 5619 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 Xcixp 8827 finSupp cfsupp 9252 Basecbs 17122 0gc0g 17345 Σg cgsu 17346 Grpcgrp 18848 -gcsg 18850 DProd cdprd 19909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-cmn 19696 df-dprd 19911 |
| This theorem is referenced by: dmdprdsplitlem 19953 dpjeq 19975 |
| Copyright terms: Public domain | W3C validator |