MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf11 Structured version   Visualization version   GIF version

Theorem dprdf11 19142
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdf11.4 (𝜑𝐻𝑊)
Assertion
Ref Expression
dprdf11 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdf11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
5 eqid 2801 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19131 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffnd 6492 . . 3 (𝜑𝐹 Fn 𝐼)
8 dprdf11.4 . . . . 5 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19131 . . . 4 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffnd 6492 . . 3 (𝜑𝐻 Fn 𝐼)
11 eqfnfv 6783 . . 3 ((𝐹 Fn 𝐼𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
127, 10, 11syl2anc 587 . 2 (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
13 eldprdi.0 . . . 4 0 = (0g𝐺)
14 eqid 2801 . . . . . 6 (-g𝐺) = (-g𝐺)
1513, 1, 2, 3, 4, 8, 14dprdfsub 19140 . . . . 5 (𝜑 → ((𝐹f (-g𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻))))
1615simpld 498 . . . 4 (𝜑 → (𝐹f (-g𝐺)𝐻) ∈ 𝑊)
1713, 1, 2, 3, 16dprdfeq0 19141 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ (𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 )))
1815simprd 499 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (-g𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)))
1918eqeq1d 2803 . . 3 (𝜑 → ((𝐺 Σg (𝐹f (-g𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ))
202, 3dprddomcld 19120 . . . . . 6 (𝜑𝐼 ∈ V)
21 fvexd 6664 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
22 fvexd 6664 . . . . . 6 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ V)
236feqmptd 6712 . . . . . 6 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
249feqmptd 6712 . . . . . 6 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
2520, 21, 22, 23, 24offval2 7410 . . . . 5 (𝜑 → (𝐹f (-g𝐺)𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))))
2625eqeq1d 2803 . . . 4 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ (𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 )))
27 ovex 7172 . . . . . . 7 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
2827rgenw 3121 . . . . . 6 𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V
29 mpteqb 6768 . . . . . 6 (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) ∈ V → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ))
3028, 29ax-mp 5 . . . . 5 ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 )
31 dprdgrp 19124 . . . . . . . . 9 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
322, 31syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
3332adantr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
346ffvelrnda 6832 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
359ffvelrnda 6832 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (Base‘𝐺))
365, 13, 14grpsubeq0 18181 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺) ∧ (𝐻𝑥) ∈ (Base‘𝐺)) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3733, 34, 35, 36syl3anc 1368 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ (𝐹𝑥) = (𝐻𝑥)))
3837ralbidva 3164 . . . . 5 (𝜑 → (∀𝑥𝐼 ((𝐹𝑥)(-g𝐺)(𝐻𝑥)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
3930, 38syl5bb 286 . . . 4 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(-g𝐺)(𝐻𝑥))) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4026, 39bitrd 282 . . 3 (𝜑 → ((𝐹f (-g𝐺)𝐻) = (𝑥𝐼0 ) ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
4117, 19, 403bitr3d 312 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥𝐼 (𝐹𝑥) = (𝐻𝑥)))
425dprdssv 19135 . . . 4 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4313, 1, 2, 3, 4eldprdi 19137 . . . 4 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sseldi 3916 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4513, 1, 2, 3, 8eldprdi 19137 . . . 4 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sseldi 3916 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 13, 14grpsubeq0 18181 . . 3 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4832, 44, 46, 47syl3anc 1368 . 2 (𝜑 → (((𝐺 Σg 𝐹)(-g𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻)))
4912, 41, 483bitr2rd 311 1 (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wral 3109  {crab 3113  Vcvv 3444   class class class wbr 5033  cmpt 5113  dom cdm 5523   Fn wfn 6323  cfv 6328  (class class class)co 7139  f cof 7391  Xcixp 8448   finSupp cfsupp 8821  Basecbs 16479  0gc0g 16709   Σg cgsu 16710  Grpcgrp 18099  -gcsg 18101   DProd cdprd 19112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-gsum 16712  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-gim 18395  df-cntz 18443  df-oppg 18470  df-cmn 18904  df-dprd 19114
This theorem is referenced by:  dmdprdsplitlem  19156  dpjeq  19178
  Copyright terms: Public domain W3C validator