| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf11 | Structured version Visualization version GIF version | ||
| Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
| eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| dprdf11.4 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dprdf11 | ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 2 | eldprdi.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | eldprdi.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 4 | eldprdi.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | dprdff 19911 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 7 | 6 | ffnd 6657 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
| 8 | dprdf11.4 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 9 | 1, 2, 3, 8, 5 | dprdff 19911 | . . . 4 ⊢ (𝜑 → 𝐻:𝐼⟶(Base‘𝐺)) |
| 10 | 9 | ffnd 6657 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 11 | eqfnfv 6969 | . . 3 ⊢ ((𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) | |
| 12 | 7, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 13 | eldprdi.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 14 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 15 | 13, 1, 2, 3, 4, 8, 14 | dprdfsub 19920 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)))) |
| 16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) ∈ 𝑊) |
| 17 | 13, 1, 2, 3, 16 | dprdfeq0 19921 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 18 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻))) |
| 19 | 18 | eqeq1d 2731 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘f (-g‘𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 )) |
| 20 | 2, 3 | dprddomcld 19900 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 21 | fvexd 6841 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
| 22 | fvexd 6841 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ V) | |
| 23 | 6 | feqmptd 6895 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 24 | 9 | feqmptd 6895 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐼 ↦ (𝐻‘𝑥))) |
| 25 | 20, 21, 22, 23, 24 | offval2 7637 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)))) |
| 26 | 25 | eqeq1d 2731 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 27 | ovex 7386 | . . . . . . 7 ⊢ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V | |
| 28 | 27 | rgenw 3048 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V |
| 29 | mpteqb 6953 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 )) | |
| 30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ) |
| 31 | dprdgrp 19904 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 32 | 2, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 33 | 32 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
| 34 | 6 | ffvelcdmda 7022 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
| 35 | 9 | ffvelcdmda 7022 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ (Base‘𝐺)) |
| 36 | 5, 13, 14 | grpsubeq0 18923 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺) ∧ (𝐻‘𝑥) ∈ (Base‘𝐺)) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 37 | 33, 34, 35, 36 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 38 | 37 | ralbidva 3150 | . . . . 5 ⊢ (𝜑 → (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 39 | 30, 38 | bitrid 283 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 40 | 26, 39 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f (-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 41 | 17, 19, 40 | 3bitr3d 309 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 42 | 5 | dprdssv 19915 | . . . 4 ⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
| 43 | 13, 1, 2, 3, 4 | eldprdi 19917 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
| 44 | 42, 43 | sselid 3935 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺)) |
| 45 | 13, 1, 2, 3, 8 | eldprdi 19917 | . . . 4 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆)) |
| 46 | 42, 45 | sselid 3935 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) |
| 47 | 5, 13, 14 | grpsubeq0 18923 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 48 | 32, 44, 46, 47 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 49 | 12, 41, 48 | 3bitr2rd 308 | 1 ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 Vcvv 3438 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5623 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 Xcixp 8831 finSupp cfsupp 9270 Basecbs 17138 0gc0g 17361 Σg cgsu 17362 Grpcgrp 18830 -gcsg 18832 DProd cdprd 19892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-cntz 19214 df-oppg 19243 df-cmn 19679 df-dprd 19894 |
| This theorem is referenced by: dmdprdsplitlem 19936 dpjeq 19958 |
| Copyright terms: Public domain | W3C validator |