MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubeq4 Structured version   Visualization version   GIF version

Theorem addsubeq4 10890
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
addsubeq4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶𝐴) = (𝐵𝐷)))

Proof of Theorem addsubeq4
StepHypRef Expression
1 eqcom 2805 . . 3 ((𝐶𝐴) = (𝐵𝐷) ↔ (𝐵𝐷) = (𝐶𝐴))
2 subcl 10874 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
32ancoms 462 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
4 subadd 10878 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
543expa 1115 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
65ancoms 462 . . . . 5 (((𝐶𝐴) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
73, 6sylan 583 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
87an4s 659 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
91, 8syl5bb 286 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶𝐴) = (𝐵𝐷) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
10 addcom 10815 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
1110adantl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
1211oveq1d 7150 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = ((𝐷 + 𝐶) − 𝐴))
13 addsubass 10885 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
14133com12 1120 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
15143expa 1115 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
1615ancoms 462 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
1712, 16eqtrd 2833 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶𝐴)))
1817adantlr 714 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶𝐴)))
1918eqeq1d 2800 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
20 addcl 10608 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
21 subadd 10878 . . . . 5 (((𝐶 + 𝐷) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
22213expb 1117 . . . 4 (((𝐶 + 𝐷) ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
2322ancoms 462 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
2420, 23sylan2 595 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
259, 19, 243bitr2rd 311 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶𝐴) = (𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  (class class class)co 7135  cc 10524   + caddc 10529  cmin 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861
This theorem is referenced by:  subcan  10930  addsubeq4d  11037  dvsqrt  25331  dvcnsqrt  25333  addsubeq4com  39474
  Copyright terms: Public domain W3C validator