MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubeq4 Structured version   Visualization version   GIF version

Theorem addsubeq4 11502
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
addsubeq4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶𝐴) = (𝐵𝐷)))

Proof of Theorem addsubeq4
StepHypRef Expression
1 eqcom 2743 . . 3 ((𝐶𝐴) = (𝐵𝐷) ↔ (𝐵𝐷) = (𝐶𝐴))
2 subcl 11486 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
32ancoms 458 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
4 subadd 11490 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
543expa 1118 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
65ancoms 458 . . . . 5 (((𝐶𝐴) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
73, 6sylan 580 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
87an4s 660 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
91, 8bitrid 283 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶𝐴) = (𝐵𝐷) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
10 addcom 11426 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
1110adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
1211oveq1d 7425 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = ((𝐷 + 𝐶) − 𝐴))
13 addsubass 11497 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
14133com12 1123 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
15143expa 1118 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
1615ancoms 458 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
1712, 16eqtrd 2771 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶𝐴)))
1817adantlr 715 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶𝐴)))
1918eqeq1d 2738 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
20 addcl 11216 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
21 subadd 11490 . . . . 5 (((𝐶 + 𝐷) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
22213expb 1120 . . . 4 (((𝐶 + 𝐷) ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
2322ancoms 458 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
2420, 23sylan2 593 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
259, 19, 243bitr2rd 308 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶𝐴) = (𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7410  cc 11132   + caddc 11137  cmin 11471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473
This theorem is referenced by:  subcan  11543  addsubeq4d  11650  dvsqrt  26708  dvcnsqrt  26710  addsubeq4com  42297
  Copyright terms: Public domain W3C validator