| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecvscan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for scalar multiplication. (hvmulcan2 31009 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lvecmulcan2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecmulcan2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecmulcan2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecmulcan2.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecmulcan2.o | ⊢ 0 = (0g‘𝑊) |
| lvecmulcan2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecmulcan2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecmulcan2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lvecmulcan2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lvecmulcan2.n | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| Ref | Expression |
|---|---|
| lvecvscan2 | ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan2.n | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 2 | 1 | neneqd 2931 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 = 0 ) |
| 3 | biorf 936 | . . . . 5 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)))) | |
| 4 | orcom 870 | . . . . 5 ⊢ ((𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 )) | |
| 5 | 3, 4 | bitrdi 287 | . . . 4 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 7 | lvecmulcan2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lvecmulcan2.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lvecmulcan2.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 10 | lvecmulcan2.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 11 | eqid 2730 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 12 | lvecmulcan2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 13 | lvecmulcan2.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 14 | lveclmod 21020 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 16 | 9 | lmodfgrp 20782 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 18 | lvecmulcan2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 19 | lvecmulcan2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 20 | eqid 2730 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
| 21 | 10, 20 | grpsubcl 18959 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
| 22 | 17, 18, 19, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
| 23 | lvecmulcan2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 24 | 7, 8, 9, 10, 11, 12, 13, 22, 23 | lvecvs0or 21025 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 25 | eqid 2730 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 26 | 7, 8, 9, 10, 25, 20, 15, 18, 19, 23 | lmodsubdir 20833 | . . . 4 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋))) |
| 27 | 26 | eqeq1d 2732 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 )) |
| 28 | 6, 24, 27 | 3bitr2rd 308 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹))) |
| 29 | 7, 9, 8, 10 | lmodvscl 20791 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 30 | 15, 18, 23, 29 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 31 | 7, 9, 8, 10 | lmodvscl 20791 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
| 32 | 15, 19, 23, 31 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
| 33 | 7, 12, 25 | lmodsubeq0 20834 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
| 34 | 15, 30, 32, 33 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
| 35 | 10, 11, 20 | grpsubeq0 18965 | . . 3 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
| 36 | 17, 18, 19, 35 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
| 37 | 28, 34, 36 | 3bitr3d 309 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 Grpcgrp 18872 -gcsg 18874 LModclmod 20773 LVecclvec 21016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-lmod 20775 df-lvec 21017 |
| This theorem is referenced by: lspsneu 21040 lvecindp 21055 lvecindp2 21056 linds2eq 33359 lshpsmreu 39109 lshpkrlem5 39114 hgmapval1 41894 hgmapadd 41895 hgmapmul 41896 hgmaprnlem1N 41897 hgmap11 41903 |
| Copyright terms: Public domain | W3C validator |