| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecvscan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for scalar multiplication. (hvmulcan2 31074 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lvecmulcan2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecmulcan2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecmulcan2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecmulcan2.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecmulcan2.o | ⊢ 0 = (0g‘𝑊) |
| lvecmulcan2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecmulcan2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecmulcan2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lvecmulcan2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lvecmulcan2.n | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| Ref | Expression |
|---|---|
| lvecvscan2 | ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan2.n | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 2 | 1 | neneqd 2934 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 = 0 ) |
| 3 | biorf 936 | . . . . 5 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)))) | |
| 4 | orcom 870 | . . . . 5 ⊢ ((𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 )) | |
| 5 | 3, 4 | bitrdi 287 | . . . 4 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 7 | lvecmulcan2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lvecmulcan2.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lvecmulcan2.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 10 | lvecmulcan2.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 11 | eqid 2733 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 12 | lvecmulcan2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 13 | lvecmulcan2.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 14 | lveclmod 21049 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 16 | 9 | lmodfgrp 20811 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 18 | lvecmulcan2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 19 | lvecmulcan2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 20 | eqid 2733 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
| 21 | 10, 20 | grpsubcl 18941 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
| 22 | 17, 18, 19, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
| 23 | lvecmulcan2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 24 | 7, 8, 9, 10, 11, 12, 13, 22, 23 | lvecvs0or 21054 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 25 | eqid 2733 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 26 | 7, 8, 9, 10, 25, 20, 15, 18, 19, 23 | lmodsubdir 20862 | . . . 4 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋))) |
| 27 | 26 | eqeq1d 2735 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 )) |
| 28 | 6, 24, 27 | 3bitr2rd 308 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹))) |
| 29 | 7, 9, 8, 10 | lmodvscl 20820 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 30 | 15, 18, 23, 29 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 31 | 7, 9, 8, 10 | lmodvscl 20820 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
| 32 | 15, 19, 23, 31 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
| 33 | 7, 12, 25 | lmodsubeq0 20863 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
| 34 | 15, 30, 32, 33 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
| 35 | 10, 11, 20 | grpsubeq0 18947 | . . 3 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
| 36 | 17, 18, 19, 35 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
| 37 | 28, 34, 36 | 3bitr3d 309 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 Grpcgrp 18854 -gcsg 18856 LModclmod 20802 LVecclvec 21045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-drng 20655 df-lmod 20804 df-lvec 21046 |
| This theorem is referenced by: lspsneu 21069 lvecindp 21084 lvecindp2 21085 linds2eq 33390 lshpsmreu 39281 lshpkrlem5 39286 hgmapval1 42065 hgmapadd 42066 hgmapmul 42067 hgmaprnlem1N 42068 hgmap11 42074 |
| Copyright terms: Public domain | W3C validator |