MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan2 Structured version   Visualization version   GIF version

Theorem lvecvscan2 20713
Description: Cancellation law for scalar multiplication. (hvmulcan2 30304 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan2.v 𝑉 = (Base‘𝑊)
lvecmulcan2.s · = ( ·𝑠𝑊)
lvecmulcan2.f 𝐹 = (Scalar‘𝑊)
lvecmulcan2.k 𝐾 = (Base‘𝐹)
lvecmulcan2.o 0 = (0g𝑊)
lvecmulcan2.w (𝜑𝑊 ∈ LVec)
lvecmulcan2.a (𝜑𝐴𝐾)
lvecmulcan2.b (𝜑𝐵𝐾)
lvecmulcan2.x (𝜑𝑋𝑉)
lvecmulcan2.n (𝜑𝑋0 )
Assertion
Ref Expression
lvecvscan2 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))

Proof of Theorem lvecvscan2
StepHypRef Expression
1 lvecmulcan2.n . . . . 5 (𝜑𝑋0 )
21neneqd 2946 . . . 4 (𝜑 → ¬ 𝑋 = 0 )
3 biorf 936 . . . . 5 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹))))
4 orcom 869 . . . . 5 ((𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹)) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 ))
53, 4bitrdi 287 . . . 4 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
62, 5syl 17 . . 3 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
7 lvecmulcan2.v . . . 4 𝑉 = (Base‘𝑊)
8 lvecmulcan2.s . . . 4 · = ( ·𝑠𝑊)
9 lvecmulcan2.f . . . 4 𝐹 = (Scalar‘𝑊)
10 lvecmulcan2.k . . . 4 𝐾 = (Base‘𝐹)
11 eqid 2733 . . . 4 (0g𝐹) = (0g𝐹)
12 lvecmulcan2.o . . . 4 0 = (0g𝑊)
13 lvecmulcan2.w . . . 4 (𝜑𝑊 ∈ LVec)
14 lveclmod 20705 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1513, 14syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
169lmodfgrp 20468 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
18 lvecmulcan2.a . . . . 5 (𝜑𝐴𝐾)
19 lvecmulcan2.b . . . . 5 (𝜑𝐵𝐾)
20 eqid 2733 . . . . . 6 (-g𝐹) = (-g𝐹)
2110, 20grpsubcl 18899 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
2217, 18, 19, 21syl3anc 1372 . . . 4 (𝜑 → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
23 lvecmulcan2.x . . . 4 (𝜑𝑋𝑉)
247, 8, 9, 10, 11, 12, 13, 22, 23lvecvs0or 20709 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
25 eqid 2733 . . . . 5 (-g𝑊) = (-g𝑊)
267, 8, 9, 10, 25, 20, 15, 18, 19, 23lmodsubdir 20518 . . . 4 (𝜑 → ((𝐴(-g𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)))
2726eqeq1d 2735 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ))
286, 24, 273bitr2rd 308 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g𝐹)𝐵) = (0g𝐹)))
297, 9, 8, 10lmodvscl 20477 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
3015, 18, 23, 29syl3anc 1372 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
317, 9, 8, 10lmodvscl 20477 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
3215, 19, 23, 31syl3anc 1372 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
337, 12, 25lmodsubeq0 20519 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3415, 30, 32, 33syl3anc 1372 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3510, 11, 20grpsubeq0 18905 . . 3 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3617, 18, 19, 35syl3anc 1372 . 2 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3728, 34, 363bitr3d 309 1 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 846   = wceq 1542  wcel 2107  wne 2941  cfv 6540  (class class class)co 7404  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  Grpcgrp 18815  -gcsg 18817  LModclmod 20459  LVecclvec 20701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mgp 19980  df-ur 19997  df-ring 20049  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-drng 20306  df-lmod 20461  df-lvec 20702
This theorem is referenced by:  lspsneu  20724  lvecindp  20739  lvecindp2  20740  linds2eq  32462  lshpsmreu  37917  lshpkrlem5  37922  hgmapval1  40702  hgmapadd  40703  hgmapmul  40704  hgmaprnlem1N  40705  hgmap11  40711
  Copyright terms: Public domain W3C validator