MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan2 Structured version   Visualization version   GIF version

Theorem lvecvscan2 19952
Description: Cancellation law for scalar multiplication. (hvmulcan2 28955 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan2.v 𝑉 = (Base‘𝑊)
lvecmulcan2.s · = ( ·𝑠𝑊)
lvecmulcan2.f 𝐹 = (Scalar‘𝑊)
lvecmulcan2.k 𝐾 = (Base‘𝐹)
lvecmulcan2.o 0 = (0g𝑊)
lvecmulcan2.w (𝜑𝑊 ∈ LVec)
lvecmulcan2.a (𝜑𝐴𝐾)
lvecmulcan2.b (𝜑𝐵𝐾)
lvecmulcan2.x (𝜑𝑋𝑉)
lvecmulcan2.n (𝜑𝑋0 )
Assertion
Ref Expression
lvecvscan2 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))

Proof of Theorem lvecvscan2
StepHypRef Expression
1 lvecmulcan2.n . . . . 5 (𝜑𝑋0 )
21neneqd 2956 . . . 4 (𝜑 → ¬ 𝑋 = 0 )
3 biorf 934 . . . . 5 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹))))
4 orcom 867 . . . . 5 ((𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹)) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 ))
53, 4bitrdi 290 . . . 4 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
62, 5syl 17 . . 3 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
7 lvecmulcan2.v . . . 4 𝑉 = (Base‘𝑊)
8 lvecmulcan2.s . . . 4 · = ( ·𝑠𝑊)
9 lvecmulcan2.f . . . 4 𝐹 = (Scalar‘𝑊)
10 lvecmulcan2.k . . . 4 𝐾 = (Base‘𝐹)
11 eqid 2758 . . . 4 (0g𝐹) = (0g𝐹)
12 lvecmulcan2.o . . . 4 0 = (0g𝑊)
13 lvecmulcan2.w . . . 4 (𝜑𝑊 ∈ LVec)
14 lveclmod 19946 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1513, 14syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
169lmodfgrp 19711 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
18 lvecmulcan2.a . . . . 5 (𝜑𝐴𝐾)
19 lvecmulcan2.b . . . . 5 (𝜑𝐵𝐾)
20 eqid 2758 . . . . . 6 (-g𝐹) = (-g𝐹)
2110, 20grpsubcl 18246 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
2217, 18, 19, 21syl3anc 1368 . . . 4 (𝜑 → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
23 lvecmulcan2.x . . . 4 (𝜑𝑋𝑉)
247, 8, 9, 10, 11, 12, 13, 22, 23lvecvs0or 19948 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
25 eqid 2758 . . . . 5 (-g𝑊) = (-g𝑊)
267, 8, 9, 10, 25, 20, 15, 18, 19, 23lmodsubdir 19760 . . . 4 (𝜑 → ((𝐴(-g𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)))
2726eqeq1d 2760 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ))
286, 24, 273bitr2rd 311 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g𝐹)𝐵) = (0g𝐹)))
297, 9, 8, 10lmodvscl 19719 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
3015, 18, 23, 29syl3anc 1368 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
317, 9, 8, 10lmodvscl 19719 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
3215, 19, 23, 31syl3anc 1368 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
337, 12, 25lmodsubeq0 19761 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3415, 30, 32, 33syl3anc 1368 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3510, 11, 20grpsubeq0 18252 . . 3 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3617, 18, 19, 35syl3anc 1368 . 2 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3728, 34, 363bitr3d 312 1 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wo 844   = wceq 1538  wcel 2111  wne 2951  cfv 6335  (class class class)co 7150  Basecbs 16541  Scalarcsca 16626   ·𝑠 cvsca 16627  0gc0g 16771  Grpcgrp 18169  -gcsg 18171  LModclmod 19702  LVecclvec 19942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mgp 19308  df-ur 19320  df-ring 19367  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-drng 19572  df-lmod 19704  df-lvec 19943
This theorem is referenced by:  lspsneu  19963  lvecindp  19978  lvecindp2  19979  linds2eq  31096  lshpsmreu  36685  lshpkrlem5  36690  hgmapval1  39469  hgmapadd  39470  hgmapmul  39471  hgmaprnlem1N  39472  hgmap11  39478
  Copyright terms: Public domain W3C validator