MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan2 Structured version   Visualization version   GIF version

Theorem lvecvscan2 20289
Description: Cancellation law for scalar multiplication. (hvmulcan2 29336 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan2.v 𝑉 = (Base‘𝑊)
lvecmulcan2.s · = ( ·𝑠𝑊)
lvecmulcan2.f 𝐹 = (Scalar‘𝑊)
lvecmulcan2.k 𝐾 = (Base‘𝐹)
lvecmulcan2.o 0 = (0g𝑊)
lvecmulcan2.w (𝜑𝑊 ∈ LVec)
lvecmulcan2.a (𝜑𝐴𝐾)
lvecmulcan2.b (𝜑𝐵𝐾)
lvecmulcan2.x (𝜑𝑋𝑉)
lvecmulcan2.n (𝜑𝑋0 )
Assertion
Ref Expression
lvecvscan2 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))

Proof of Theorem lvecvscan2
StepHypRef Expression
1 lvecmulcan2.n . . . . 5 (𝜑𝑋0 )
21neneqd 2947 . . . 4 (𝜑 → ¬ 𝑋 = 0 )
3 biorf 933 . . . . 5 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹))))
4 orcom 866 . . . . 5 ((𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹)) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 ))
53, 4bitrdi 286 . . . 4 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
62, 5syl 17 . . 3 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
7 lvecmulcan2.v . . . 4 𝑉 = (Base‘𝑊)
8 lvecmulcan2.s . . . 4 · = ( ·𝑠𝑊)
9 lvecmulcan2.f . . . 4 𝐹 = (Scalar‘𝑊)
10 lvecmulcan2.k . . . 4 𝐾 = (Base‘𝐹)
11 eqid 2738 . . . 4 (0g𝐹) = (0g𝐹)
12 lvecmulcan2.o . . . 4 0 = (0g𝑊)
13 lvecmulcan2.w . . . 4 (𝜑𝑊 ∈ LVec)
14 lveclmod 20283 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1513, 14syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
169lmodfgrp 20047 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
18 lvecmulcan2.a . . . . 5 (𝜑𝐴𝐾)
19 lvecmulcan2.b . . . . 5 (𝜑𝐵𝐾)
20 eqid 2738 . . . . . 6 (-g𝐹) = (-g𝐹)
2110, 20grpsubcl 18570 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
2217, 18, 19, 21syl3anc 1369 . . . 4 (𝜑 → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
23 lvecmulcan2.x . . . 4 (𝜑𝑋𝑉)
247, 8, 9, 10, 11, 12, 13, 22, 23lvecvs0or 20285 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
25 eqid 2738 . . . . 5 (-g𝑊) = (-g𝑊)
267, 8, 9, 10, 25, 20, 15, 18, 19, 23lmodsubdir 20096 . . . 4 (𝜑 → ((𝐴(-g𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)))
2726eqeq1d 2740 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ))
286, 24, 273bitr2rd 307 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g𝐹)𝐵) = (0g𝐹)))
297, 9, 8, 10lmodvscl 20055 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
3015, 18, 23, 29syl3anc 1369 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
317, 9, 8, 10lmodvscl 20055 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
3215, 19, 23, 31syl3anc 1369 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
337, 12, 25lmodsubeq0 20097 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3415, 30, 32, 33syl3anc 1369 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3510, 11, 20grpsubeq0 18576 . . 3 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3617, 18, 19, 35syl3anc 1369 . 2 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3728, 34, 363bitr3d 308 1 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  LModclmod 20038  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lvec 20280
This theorem is referenced by:  lspsneu  20300  lvecindp  20315  lvecindp2  20316  linds2eq  31477  lshpsmreu  37050  lshpkrlem5  37055  hgmapval1  39834  hgmapadd  39835  hgmapmul  39836  hgmaprnlem1N  39837  hgmap11  39843
  Copyright terms: Public domain W3C validator