![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecvscan2 | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (hvmulcan2 31102 analog.) (Contributed by NM, 2-Jul-2014.) |
Ref | Expression |
---|---|
lvecmulcan2.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecmulcan2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecmulcan2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecmulcan2.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecmulcan2.o | ⊢ 0 = (0g‘𝑊) |
lvecmulcan2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecmulcan2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecmulcan2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lvecmulcan2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecmulcan2.n | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Ref | Expression |
---|---|
lvecvscan2 | ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecmulcan2.n | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
2 | 1 | neneqd 2943 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 = 0 ) |
3 | biorf 936 | . . . . 5 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)))) | |
4 | orcom 870 | . . . . 5 ⊢ ((𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 )) | |
5 | 3, 4 | bitrdi 287 | . . . 4 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
7 | lvecmulcan2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lvecmulcan2.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lvecmulcan2.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
10 | lvecmulcan2.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
11 | eqid 2735 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
12 | lvecmulcan2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
13 | lvecmulcan2.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
14 | lveclmod 21123 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
16 | 9 | lmodfgrp 20884 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
18 | lvecmulcan2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
19 | lvecmulcan2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
20 | eqid 2735 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
21 | 10, 20 | grpsubcl 19051 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
22 | 17, 18, 19, 21 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
23 | lvecmulcan2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
24 | 7, 8, 9, 10, 11, 12, 13, 22, 23 | lvecvs0or 21128 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
25 | eqid 2735 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
26 | 7, 8, 9, 10, 25, 20, 15, 18, 19, 23 | lmodsubdir 20935 | . . . 4 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋))) |
27 | 26 | eqeq1d 2737 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 )) |
28 | 6, 24, 27 | 3bitr2rd 308 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹))) |
29 | 7, 9, 8, 10 | lmodvscl 20893 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
30 | 15, 18, 23, 29 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
31 | 7, 9, 8, 10 | lmodvscl 20893 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
32 | 15, 19, 23, 31 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
33 | 7, 12, 25 | lmodsubeq0 20936 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
34 | 15, 30, 32, 33 | syl3anc 1370 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
35 | 10, 11, 20 | grpsubeq0 19057 | . . 3 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
36 | 17, 18, 19, 35 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
37 | 28, 34, 36 | 3bitr3d 309 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 Grpcgrp 18964 -gcsg 18966 LModclmod 20875 LVecclvec 21119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-drng 20748 df-lmod 20877 df-lvec 21120 |
This theorem is referenced by: lspsneu 21143 lvecindp 21158 lvecindp2 21159 linds2eq 33389 lshpsmreu 39091 lshpkrlem5 39096 hgmapval1 41876 hgmapadd 41877 hgmapmul 41878 hgmaprnlem1N 41879 hgmap11 41885 |
Copyright terms: Public domain | W3C validator |