Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lvecvscan2 | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (hvmulcan2 28955 analog.) (Contributed by NM, 2-Jul-2014.) |
Ref | Expression |
---|---|
lvecmulcan2.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecmulcan2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecmulcan2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecmulcan2.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecmulcan2.o | ⊢ 0 = (0g‘𝑊) |
lvecmulcan2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecmulcan2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecmulcan2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lvecmulcan2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecmulcan2.n | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Ref | Expression |
---|---|
lvecvscan2 | ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecmulcan2.n | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
2 | 1 | neneqd 2956 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 = 0 ) |
3 | biorf 934 | . . . . 5 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)))) | |
4 | orcom 867 | . . . . 5 ⊢ ((𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 )) | |
5 | 3, 4 | bitrdi 290 | . . . 4 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
7 | lvecmulcan2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lvecmulcan2.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lvecmulcan2.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
10 | lvecmulcan2.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
11 | eqid 2758 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
12 | lvecmulcan2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
13 | lvecmulcan2.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
14 | lveclmod 19946 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
16 | 9 | lmodfgrp 19711 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
18 | lvecmulcan2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
19 | lvecmulcan2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
20 | eqid 2758 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
21 | 10, 20 | grpsubcl 18246 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
22 | 17, 18, 19, 21 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
23 | lvecmulcan2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
24 | 7, 8, 9, 10, 11, 12, 13, 22, 23 | lvecvs0or 19948 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
25 | eqid 2758 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
26 | 7, 8, 9, 10, 25, 20, 15, 18, 19, 23 | lmodsubdir 19760 | . . . 4 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋))) |
27 | 26 | eqeq1d 2760 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 )) |
28 | 6, 24, 27 | 3bitr2rd 311 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹))) |
29 | 7, 9, 8, 10 | lmodvscl 19719 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
30 | 15, 18, 23, 29 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
31 | 7, 9, 8, 10 | lmodvscl 19719 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
32 | 15, 19, 23, 31 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
33 | 7, 12, 25 | lmodsubeq0 19761 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
34 | 15, 30, 32, 33 | syl3anc 1368 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
35 | 10, 11, 20 | grpsubeq0 18252 | . . 3 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
36 | 17, 18, 19, 35 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
37 | 28, 34, 36 | 3bitr3d 312 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 Scalarcsca 16626 ·𝑠 cvsca 16627 0gc0g 16771 Grpcgrp 18169 -gcsg 18171 LModclmod 19702 LVecclvec 19942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mgp 19308 df-ur 19320 df-ring 19367 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-drng 19572 df-lmod 19704 df-lvec 19943 |
This theorem is referenced by: lspsneu 19963 lvecindp 19978 lvecindp2 19979 linds2eq 31096 lshpsmreu 36685 lshpkrlem5 36690 hgmapval1 39469 hgmapadd 39470 hgmapmul 39471 hgmaprnlem1N 39472 hgmap11 39478 |
Copyright terms: Public domain | W3C validator |