| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecvscan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for scalar multiplication. (hvmulcan2 31045 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lvecmulcan2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecmulcan2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecmulcan2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecmulcan2.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecmulcan2.o | ⊢ 0 = (0g‘𝑊) |
| lvecmulcan2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecmulcan2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecmulcan2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lvecmulcan2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lvecmulcan2.n | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| Ref | Expression |
|---|---|
| lvecvscan2 | ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan2.n | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 2 | 1 | neneqd 2933 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 = 0 ) |
| 3 | biorf 936 | . . . . 5 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)))) | |
| 4 | orcom 870 | . . . . 5 ⊢ ((𝑋 = 0 ∨ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹)) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 )) | |
| 5 | 3, 4 | bitrdi 287 | . . . 4 ⊢ (¬ 𝑋 = 0 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 7 | lvecmulcan2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lvecmulcan2.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lvecmulcan2.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 10 | lvecmulcan2.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 11 | eqid 2731 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 12 | lvecmulcan2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 13 | lvecmulcan2.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 14 | lveclmod 21035 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 16 | 9 | lmodfgrp 20797 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 18 | lvecmulcan2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 19 | lvecmulcan2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 20 | eqid 2731 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
| 21 | 10, 20 | grpsubcl 18928 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
| 22 | 17, 18, 19, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴(-g‘𝐹)𝐵) ∈ 𝐾) |
| 23 | lvecmulcan2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 24 | 7, 8, 9, 10, 11, 12, 13, 22, 23 | lvecvs0or 21040 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ∨ 𝑋 = 0 ))) |
| 25 | eqid 2731 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 26 | 7, 8, 9, 10, 25, 20, 15, 18, 19, 23 | lmodsubdir 20848 | . . . 4 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋))) |
| 27 | 26 | eqeq1d 2733 | . . 3 ⊢ (𝜑 → (((𝐴(-g‘𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 )) |
| 28 | 6, 24, 27 | 3bitr2rd 308 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g‘𝐹)𝐵) = (0g‘𝐹))) |
| 29 | 7, 9, 8, 10 | lmodvscl 20806 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 30 | 15, 18, 23, 29 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 31 | 7, 9, 8, 10 | lmodvscl 20806 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
| 32 | 15, 19, 23, 31 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
| 33 | 7, 12, 25 | lmodsubeq0 20849 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
| 34 | 15, 30, 32, 33 | syl3anc 1373 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋))) |
| 35 | 10, 11, 20 | grpsubeq0 18934 | . . 3 ⊢ ((𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
| 36 | 17, 18, 19, 35 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴(-g‘𝐹)𝐵) = (0g‘𝐹) ↔ 𝐴 = 𝐵)) |
| 37 | 28, 34, 36 | 3bitr3d 309 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 0gc0g 17338 Grpcgrp 18841 -gcsg 18843 LModclmod 20788 LVecclvec 21031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-drng 20641 df-lmod 20790 df-lvec 21032 |
| This theorem is referenced by: lspsneu 21055 lvecindp 21070 lvecindp2 21071 linds2eq 33338 lshpsmreu 39148 lshpkrlem5 39153 hgmapval1 41932 hgmapadd 41933 hgmapmul 41934 hgmaprnlem1N 41935 hgmap11 41941 |
| Copyright terms: Public domain | W3C validator |