MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan2 Structured version   Visualization version   GIF version

Theorem lvecvscan2 21137
Description: Cancellation law for scalar multiplication. (hvmulcan2 31105 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan2.v 𝑉 = (Base‘𝑊)
lvecmulcan2.s · = ( ·𝑠𝑊)
lvecmulcan2.f 𝐹 = (Scalar‘𝑊)
lvecmulcan2.k 𝐾 = (Base‘𝐹)
lvecmulcan2.o 0 = (0g𝑊)
lvecmulcan2.w (𝜑𝑊 ∈ LVec)
lvecmulcan2.a (𝜑𝐴𝐾)
lvecmulcan2.b (𝜑𝐵𝐾)
lvecmulcan2.x (𝜑𝑋𝑉)
lvecmulcan2.n (𝜑𝑋0 )
Assertion
Ref Expression
lvecvscan2 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))

Proof of Theorem lvecvscan2
StepHypRef Expression
1 lvecmulcan2.n . . . . 5 (𝜑𝑋0 )
21neneqd 2951 . . . 4 (𝜑 → ¬ 𝑋 = 0 )
3 biorf 935 . . . . 5 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹))))
4 orcom 869 . . . . 5 ((𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹)) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 ))
53, 4bitrdi 287 . . . 4 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
62, 5syl 17 . . 3 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
7 lvecmulcan2.v . . . 4 𝑉 = (Base‘𝑊)
8 lvecmulcan2.s . . . 4 · = ( ·𝑠𝑊)
9 lvecmulcan2.f . . . 4 𝐹 = (Scalar‘𝑊)
10 lvecmulcan2.k . . . 4 𝐾 = (Base‘𝐹)
11 eqid 2740 . . . 4 (0g𝐹) = (0g𝐹)
12 lvecmulcan2.o . . . 4 0 = (0g𝑊)
13 lvecmulcan2.w . . . 4 (𝜑𝑊 ∈ LVec)
14 lveclmod 21128 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1513, 14syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
169lmodfgrp 20889 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
18 lvecmulcan2.a . . . . 5 (𝜑𝐴𝐾)
19 lvecmulcan2.b . . . . 5 (𝜑𝐵𝐾)
20 eqid 2740 . . . . . 6 (-g𝐹) = (-g𝐹)
2110, 20grpsubcl 19060 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
2217, 18, 19, 21syl3anc 1371 . . . 4 (𝜑 → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
23 lvecmulcan2.x . . . 4 (𝜑𝑋𝑉)
247, 8, 9, 10, 11, 12, 13, 22, 23lvecvs0or 21133 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
25 eqid 2740 . . . . 5 (-g𝑊) = (-g𝑊)
267, 8, 9, 10, 25, 20, 15, 18, 19, 23lmodsubdir 20940 . . . 4 (𝜑 → ((𝐴(-g𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)))
2726eqeq1d 2742 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ))
286, 24, 273bitr2rd 308 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g𝐹)𝐵) = (0g𝐹)))
297, 9, 8, 10lmodvscl 20898 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
3015, 18, 23, 29syl3anc 1371 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
317, 9, 8, 10lmodvscl 20898 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
3215, 19, 23, 31syl3anc 1371 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
337, 12, 25lmodsubeq0 20941 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3415, 30, 32, 33syl3anc 1371 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3510, 11, 20grpsubeq0 19066 . . 3 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3617, 18, 19, 35syl3anc 1371 . 2 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3728, 34, 363bitr3d 309 1 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  LModclmod 20880  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lvec 21125
This theorem is referenced by:  lspsneu  21148  lvecindp  21163  lvecindp2  21164  linds2eq  33374  lshpsmreu  39065  lshpkrlem5  39070  hgmapval1  41850  hgmapadd  41851  hgmapmul  41852  hgmaprnlem1N  41853  hgmap11  41859
  Copyright terms: Public domain W3C validator