MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summodnegmod Structured version   Visualization version   GIF version

Theorem summodnegmod 16103
Description: The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
summodnegmod ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁)))

Proof of Theorem summodnegmod
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simp1 1136 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ)
3 znegcl 12468 . . . 4 (𝐵 ∈ ℤ → -𝐵 ∈ ℤ)
433ad2ant2 1134 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -𝐵 ∈ ℤ)
5 moddvds 16081 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ -𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (-𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − -𝐵)))
61, 2, 4, 5syl3anc 1371 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = (-𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − -𝐵)))
7 zcn 12437 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
8 zcn 12437 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
97, 8anim12i 613 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
1093adant3 1132 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
11 subneg 11383 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))
1211eqcomd 2743 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐴 − -𝐵))
1310, 12syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 + 𝐵) = (𝐴 − -𝐵))
1413breq2d 5115 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝐴 + 𝐵) ↔ 𝑁 ∥ (𝐴 − -𝐵)))
15 zaddcl 12473 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
16153adant3 1132 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℤ)
17 dvdsval3 16074 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 + 𝐵) ∈ ℤ) → (𝑁 ∥ (𝐴 + 𝐵) ↔ ((𝐴 + 𝐵) mod 𝑁) = 0))
181, 16, 17syl2anc 584 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝐴 + 𝐵) ↔ ((𝐴 + 𝐵) mod 𝑁) = 0))
196, 14, 183bitr2rd 307 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5103  (class class class)co 7349  cc 10982  0cc0 10984   + caddc 10987  cmin 11318  -cneg 11319  cn 12086  cz 12432   mod cmo 13702  cdvds 16070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7793  df-2nd 7912  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-sup 9311  df-inf 9312  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-n0 12347  df-z 12433  df-uz 12696  df-rp 12844  df-fl 13625  df-mod 13703  df-dvds 16071
This theorem is referenced by:  fmtnoprmfac1lem  45505
  Copyright terms: Public domain W3C validator