Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochfln0 | Structured version Visualization version GIF version |
Description: The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015.) |
Ref | Expression |
---|---|
dochfln0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochfln0.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochfln0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochfln0.v | ⊢ 𝑉 = (Base‘𝑈) |
dochfln0.r | ⊢ 𝑅 = (Scalar‘𝑈) |
dochfln0.n | ⊢ 𝑁 = (0g‘𝑅) |
dochfln0.z | ⊢ 0 = (0g‘𝑈) |
dochfln0.f | ⊢ 𝐹 = (LFnl‘𝑈) |
dochfln0.l | ⊢ 𝐿 = (LKer‘𝑈) |
dochfln0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochfln0.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
dochfln0.x | ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
Ref | Expression |
---|---|
dochfln0 | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochfln0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dochfln0.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | dochfln0.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | dochfln0.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | dochfln0.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | dochfln0.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | dochfln0.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑈) | |
8 | dochfln0.l | . . . . . . 7 ⊢ 𝐿 = (LKer‘𝑈) | |
9 | 1, 3, 6 | dvhlmod 38686 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | dochfln0.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | 4, 7, 8, 9, 10 | lkrssv 36672 | . . . . . 6 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
12 | 1, 3, 4, 2 | dochssv 38931 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
13 | 6, 11, 12 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
14 | 13 | ssdifd 4046 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 })) |
15 | dochfln0.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | |
16 | 14, 15 | sseldd 3893 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
17 | 1, 2, 3, 4, 5, 6, 16 | dochnel 38969 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{𝑋})) |
18 | 15 | eldifad 3870 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
19 | 13, 18 | sseldd 3893 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | 19 | biantrurd 536 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝑋) = 𝑁 ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 𝑁))) |
21 | dochfln0.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
22 | dochfln0.n | . . . . . 6 ⊢ 𝑁 = (0g‘𝑅) | |
23 | 4, 21, 22, 7, 8 | ellkr 36665 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐿‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 𝑁))) |
24 | 9, 10, 23 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 𝑁))) |
25 | 1, 2, 3, 4, 5, 7, 8, 6, 10, 15 | dochsnkr 39048 | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
26 | 25 | eleq2d 2837 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐺) ↔ 𝑋 ∈ ( ⊥ ‘{𝑋}))) |
27 | 20, 24, 26 | 3bitr2rd 311 | . . 3 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{𝑋}) ↔ (𝐺‘𝑋) = 𝑁)) |
28 | 27 | necon3bbid 2988 | . 2 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝑋}) ↔ (𝐺‘𝑋) ≠ 𝑁)) |
29 | 17, 28 | mpbid 235 | 1 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∖ cdif 3855 ⊆ wss 3858 {csn 4522 ‘cfv 6335 Basecbs 16541 Scalarcsca 16626 0gc0g 16771 LModclmod 19702 LFnlclfn 36633 LKerclk 36661 HLchlt 36926 LHypclh 37560 DVecHcdvh 38654 ocHcoch 38923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-riotaBAD 36529 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-undef 7949 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-0g 16773 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-p1 17716 df-lat 17722 df-clat 17784 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-cntz 18514 df-lsm 18828 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-dvr 19504 df-drng 19572 df-lmod 19704 df-lss 19772 df-lsp 19812 df-lvec 19943 df-lsatoms 36552 df-lshyp 36553 df-lfl 36634 df-lkr 36662 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-llines 37074 df-lplanes 37075 df-lvols 37076 df-lines 37077 df-psubsp 37079 df-pmap 37080 df-padd 37372 df-lhyp 37564 df-laut 37565 df-ldil 37680 df-ltrn 37681 df-trl 37735 df-tgrp 38319 df-tendo 38331 df-edring 38333 df-dveca 38579 df-disoa 38605 df-dvech 38655 df-dib 38715 df-dic 38749 df-dih 38805 df-doch 38924 df-djh 38971 |
This theorem is referenced by: dochkr1 39054 dochkr1OLDN 39055 lcfl6lem 39074 |
Copyright terms: Public domain | W3C validator |