![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochfln0 | Structured version Visualization version GIF version |
Description: The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015.) |
Ref | Expression |
---|---|
dochfln0.h | β’ π» = (LHypβπΎ) |
dochfln0.o | β’ β₯ = ((ocHβπΎ)βπ) |
dochfln0.u | β’ π = ((DVecHβπΎ)βπ) |
dochfln0.v | β’ π = (Baseβπ) |
dochfln0.r | β’ π = (Scalarβπ) |
dochfln0.n | β’ π = (0gβπ ) |
dochfln0.z | β’ 0 = (0gβπ) |
dochfln0.f | β’ πΉ = (LFnlβπ) |
dochfln0.l | β’ πΏ = (LKerβπ) |
dochfln0.k | β’ (π β (πΎ β HL β§ π β π»)) |
dochfln0.g | β’ (π β πΊ β πΉ) |
dochfln0.x | β’ (π β π β (( β₯ β(πΏβπΊ)) β { 0 })) |
Ref | Expression |
---|---|
dochfln0 | β’ (π β (πΊβπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochfln0.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | dochfln0.o | . . 3 β’ β₯ = ((ocHβπΎ)βπ) | |
3 | dochfln0.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
4 | dochfln0.v | . . 3 β’ π = (Baseβπ) | |
5 | dochfln0.z | . . 3 β’ 0 = (0gβπ) | |
6 | dochfln0.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
7 | dochfln0.f | . . . . . . 7 β’ πΉ = (LFnlβπ) | |
8 | dochfln0.l | . . . . . . 7 β’ πΏ = (LKerβπ) | |
9 | 1, 3, 6 | dvhlmod 40437 | . . . . . . 7 β’ (π β π β LMod) |
10 | dochfln0.g | . . . . . . 7 β’ (π β πΊ β πΉ) | |
11 | 4, 7, 8, 9, 10 | lkrssv 38422 | . . . . . 6 β’ (π β (πΏβπΊ) β π) |
12 | 1, 3, 4, 2 | dochssv 40682 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ (πΏβπΊ) β π) β ( β₯ β(πΏβπΊ)) β π) |
13 | 6, 11, 12 | syl2anc 583 | . . . . 5 β’ (π β ( β₯ β(πΏβπΊ)) β π) |
14 | 13 | ssdifd 4132 | . . . 4 β’ (π β (( β₯ β(πΏβπΊ)) β { 0 }) β (π β { 0 })) |
15 | dochfln0.x | . . . 4 β’ (π β π β (( β₯ β(πΏβπΊ)) β { 0 })) | |
16 | 14, 15 | sseldd 3975 | . . 3 β’ (π β π β (π β { 0 })) |
17 | 1, 2, 3, 4, 5, 6, 16 | dochnel 40720 | . 2 β’ (π β Β¬ π β ( β₯ β{π})) |
18 | 15 | eldifad 3952 | . . . . . 6 β’ (π β π β ( β₯ β(πΏβπΊ))) |
19 | 13, 18 | sseldd 3975 | . . . . 5 β’ (π β π β π) |
20 | 19 | biantrurd 532 | . . . 4 β’ (π β ((πΊβπ) = π β (π β π β§ (πΊβπ) = π))) |
21 | dochfln0.r | . . . . . 6 β’ π = (Scalarβπ) | |
22 | dochfln0.n | . . . . . 6 β’ π = (0gβπ ) | |
23 | 4, 21, 22, 7, 8 | ellkr 38415 | . . . . 5 β’ ((π β LMod β§ πΊ β πΉ) β (π β (πΏβπΊ) β (π β π β§ (πΊβπ) = π))) |
24 | 9, 10, 23 | syl2anc 583 | . . . 4 β’ (π β (π β (πΏβπΊ) β (π β π β§ (πΊβπ) = π))) |
25 | 1, 2, 3, 4, 5, 7, 8, 6, 10, 15 | dochsnkr 40799 | . . . . 5 β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
26 | 25 | eleq2d 2811 | . . . 4 β’ (π β (π β (πΏβπΊ) β π β ( β₯ β{π}))) |
27 | 20, 24, 26 | 3bitr2rd 308 | . . 3 β’ (π β (π β ( β₯ β{π}) β (πΊβπ) = π)) |
28 | 27 | necon3bbid 2970 | . 2 β’ (π β (Β¬ π β ( β₯ β{π}) β (πΊβπ) β π)) |
29 | 17, 28 | mpbid 231 | 1 β’ (π β (πΊβπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 β cdif 3937 β wss 3940 {csn 4620 βcfv 6533 Basecbs 17142 Scalarcsca 17198 0gc0g 17383 LModclmod 20695 LFnlclfn 38383 LKerclk 38411 HLchlt 38676 LHypclh 39311 DVecHcdvh 40405 ocHcoch 40674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-0g 17385 df-proset 18249 df-poset 18267 df-plt 18284 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-p0 18379 df-p1 18380 df-lat 18386 df-clat 18453 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19039 df-cntz 19222 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20578 df-lmod 20697 df-lss 20768 df-lsp 20808 df-lvec 20940 df-lsatoms 38302 df-lshyp 38303 df-lfl 38384 df-lkr 38412 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tgrp 40070 df-tendo 40082 df-edring 40084 df-dveca 40330 df-disoa 40356 df-dvech 40406 df-dib 40466 df-dic 40500 df-dih 40556 df-doch 40675 df-djh 40722 |
This theorem is referenced by: dochkr1 40805 dochkr1OLDN 40806 lcfl6lem 40825 |
Copyright terms: Public domain | W3C validator |