![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochfln0 | Structured version Visualization version GIF version |
Description: The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015.) |
Ref | Expression |
---|---|
dochfln0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochfln0.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochfln0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochfln0.v | ⊢ 𝑉 = (Base‘𝑈) |
dochfln0.r | ⊢ 𝑅 = (Scalar‘𝑈) |
dochfln0.n | ⊢ 𝑁 = (0g‘𝑅) |
dochfln0.z | ⊢ 0 = (0g‘𝑈) |
dochfln0.f | ⊢ 𝐹 = (LFnl‘𝑈) |
dochfln0.l | ⊢ 𝐿 = (LKer‘𝑈) |
dochfln0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochfln0.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
dochfln0.x | ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
Ref | Expression |
---|---|
dochfln0 | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochfln0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dochfln0.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | dochfln0.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | dochfln0.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | dochfln0.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | dochfln0.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | dochfln0.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑈) | |
8 | dochfln0.l | . . . . . . 7 ⊢ 𝐿 = (LKer‘𝑈) | |
9 | 1, 3, 6 | dvhlmod 37777 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | dochfln0.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | 4, 7, 8, 9, 10 | lkrssv 35763 | . . . . . 6 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
12 | 1, 3, 4, 2 | dochssv 38022 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
13 | 6, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
14 | 13 | ssdifd 4038 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 })) |
15 | dochfln0.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | |
16 | 14, 15 | sseldd 3890 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
17 | 1, 2, 3, 4, 5, 6, 16 | dochnel 38060 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{𝑋})) |
18 | 15 | eldifad 3871 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
19 | 13, 18 | sseldd 3890 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | 19 | biantrurd 533 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝑋) = 𝑁 ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 𝑁))) |
21 | dochfln0.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
22 | dochfln0.n | . . . . . 6 ⊢ 𝑁 = (0g‘𝑅) | |
23 | 4, 21, 22, 7, 8 | ellkr 35756 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐿‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 𝑁))) |
24 | 9, 10, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 𝑁))) |
25 | 1, 2, 3, 4, 5, 7, 8, 6, 10, 15 | dochsnkr 38139 | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
26 | 25 | eleq2d 2868 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐺) ↔ 𝑋 ∈ ( ⊥ ‘{𝑋}))) |
27 | 20, 24, 26 | 3bitr2rd 309 | . . 3 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{𝑋}) ↔ (𝐺‘𝑋) = 𝑁)) |
28 | 27 | necon3bbid 3021 | . 2 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝑋}) ↔ (𝐺‘𝑋) ≠ 𝑁)) |
29 | 17, 28 | mpbid 233 | 1 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∖ cdif 3856 ⊆ wss 3859 {csn 4472 ‘cfv 6225 Basecbs 16312 Scalarcsca 16397 0gc0g 16542 LModclmod 19324 LFnlclfn 35724 LKerclk 35752 HLchlt 36017 LHypclh 36651 DVecHcdvh 37745 ocHcoch 38014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-riotaBAD 35620 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-tpos 7743 df-undef 7790 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-sca 16410 df-vsca 16411 df-0g 16544 df-proset 17367 df-poset 17385 df-plt 17397 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-p0 17478 df-p1 17479 df-lat 17485 df-clat 17547 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-grp 17864 df-minusg 17865 df-sbg 17866 df-subg 18030 df-cntz 18188 df-lsm 18491 df-cmn 18635 df-abl 18636 df-mgp 18930 df-ur 18942 df-ring 18989 df-oppr 19063 df-dvdsr 19081 df-unit 19082 df-invr 19112 df-dvr 19123 df-drng 19194 df-lmod 19326 df-lss 19394 df-lsp 19434 df-lvec 19565 df-lsatoms 35643 df-lshyp 35644 df-lfl 35725 df-lkr 35753 df-oposet 35843 df-ol 35845 df-oml 35846 df-covers 35933 df-ats 35934 df-atl 35965 df-cvlat 35989 df-hlat 36018 df-llines 36165 df-lplanes 36166 df-lvols 36167 df-lines 36168 df-psubsp 36170 df-pmap 36171 df-padd 36463 df-lhyp 36655 df-laut 36656 df-ldil 36771 df-ltrn 36772 df-trl 36826 df-tgrp 37410 df-tendo 37422 df-edring 37424 df-dveca 37670 df-disoa 37696 df-dvech 37746 df-dib 37806 df-dic 37840 df-dih 37896 df-doch 38015 df-djh 38062 |
This theorem is referenced by: dochkr1 38145 dochkr1OLDN 38146 lcfl6lem 38165 |
Copyright terms: Public domain | W3C validator |